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Preface

Being a teacher of this subject, I have felt a crisis of the students in empowering
themselves in the subject through a thorough reading and thereby learning the
essence of this branch of physics following a methodical book, keeping in mind
the University examination system. [ have tried to meet this crisis presenting this
book to our beloved UG and PG students. Research is done on the articles which
are required for their easy understanding of the subject and to meet the university
curriculum. The basic understanding as well as their relation to thermodynamic
macroscopic variables are emphasized. All three statistics are developed
separately following number of applications to solid state phenomenon and
others. The method of ensembles is discussed with sincerity without mathematical
complications. Some special topics like Transport phenomenon, Bose-Einstein
condensation of liquid Helium, White dwarfs, introductory Ising model and Yang
and Lee Theory are given to grow interest to our students into the recent research
on the relevant topics. Hope this book will serve most of the requirement for UG
and PG students of this discipline. Every suggestion and query will be appreciated
for further improvement of this book.

While writing this book, I have consulted a large number of text books and
websites. I am grateful to the authors of such books and acknowledge their
contribution submissively. Nothing new is written by me, but the presentation
is different from others. I would feel grateful if this publication receives the
encouraging support and patronage from the concerned students and faculty.

I express heartfelt thanks to my wife Amala who is also a teacher of this subject
for inspiring me to publish the work and thoughts for a prestigious organization
like Narosa Publishing House in the form of text book. Deep gratitude is also
extended to my only daughter Samadrita for sacrificing her leisure time during
the preparation of the manuscript. ’

Last but not the least, I sincerely express my thanks to the publisher and
the Managing Director of Narosa Publishing House, Mr. N. K. Mehra whose
promptness encouraged me to complete the manuscript in time. Thanks to the
entire production team for giving shape of the work in the form of book.

Madhusudan Jana



Basics of Statistical
Mechanics and its Relation
to Thermodynamics

1.1 INTRODUCTION: NEED OF STATISTICAL MECHANICS

All we know that the thermodynamics describes the macroscopic properties of
matter phenomenologically with the help of equations of state which are derived
empirically. But it consistent with the large universality of thermodynamics, the
same laws of thermodynamics hold for different materials. However, this doesn’t
tell us what makes the thermal conductivity of one material different from the
other. It is intuitively obvious that the thermal conductivity of one material is
different from the other because microscopically the materials are different. The
macroscopic quantities in materials must come from the microscopic properties.
For example, the pressure of a gas is due to the collisions of the molecules with a
surface of the wall of container, whereas temperature is directly given by the mean
kinetic energy of the particles. On the other hand, the microscopic laws of physics
describe the behaviour of individual particles with their mutual interaction. We
use Newton’s equations of motion for classical particles, whereas for quantum
particles we use Schrodinger equation. Although microscopic laws describe the
performance of particles precisely, they do not tell us how an enormous collection
of particles, of the order of 10, would perform on the average.

It is the task of statistical mechanics to answer this question, particularly how
microscopic performance of particles or small constituents, leads to a particular
macroscopic property of the material. Thus, statistical mechanics provides a
bridge between microscopic physics and thermodynamics.

One may think that microscopic laws describe the physics of one particle,
and hence, they should describe the behavior of an assembly of particles
(however large). A gas of N classical particles can be described by a group
of N numbers of Newtonian coupled equations of motion. A solution of these
equations would allow us to know exact position and velocity of each particle
at any future time. This information allows us to know the microscopic state
(which will be henceforth called microstate) of the gas at every instant. Solving
these coupled equations methodically is usually not possible. However, one may
solve such equations numerically, using computers. However, for a practical
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situation N is of the order of 10?*, and solving such a large number of equations
numerically is beyond the capacity of any computer.

One should appreciate that for describing the macroscopic state of the gas,
characterised by pressure, volume, temperature (which will be henceforth called
macrostate), we do not need information on each microscopic detail which
these coupled equations could make available. A large number of microstates
may correspond to a single macrostate. We would, be interested in knowing the
temperature of the gas, and not bother about what a particular atom of the gas
is doing every of time. This means, we only need some average macroscopic
quantities, and not every microscopic detail. So, solving these coupled differential
equations would anyway be an overload, if we are able to solve them. So, we need
a theoretically different approach to solve this problem.

In one sentence, thermodynamics is devoted to enlightening relations,
sometimes predicted and unpredicted between the macroscopic quantities
describing the gross properties of the materials. Statistical Mechanics provides
statistically based approaches which fill up the gap between the physics of the
individual particles of the materials and the simple thermodynamic laws which
explain the macroscopic properties of many-particle systems.

The study of statistical mechanics can be classified mainly in the following
categories:

(1) Classical Statistical Mechanics Maxwell-Boltzmann Statistics
known as

(2) Quantum Statistical Mechanics (i) Bose-Einstein Statistics
known as (ii) Fermi-Dirac Statistics

All these three statistics and their applications will be discussed in separate
chapters.

1.2 PHASE SPACE

Let us be more specific about the concept of microstates. For a classical system,
it is required to know at a time ¢ all generalised coordinates g,(f) and momenta
p(?) to uniquely specify the state of motion of the system. Thus, for a mechanical
system, we can interpret the set {g;; p;; i = 1; 2; ... N} as the microstate of this
system. For a single particle in one dimension, there is only one position variable
x and one momentum variable p.. If we plot x on the x-axis and p, on the y-axis,
a point on the graph will represent one state of the particle. As the particle moves
in time, the point will follow a trajectory. We will call the space described by x
and p , phase space (also called [L-space), the point representing a particular value
of x and p,, a phase point, and the trajectory followed by the point, the phase
trajectory. In this particular case, the phase space is 2-dimensional.
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Problem Find the phase trajectory of a one-dimensional S.H.O.
Solution: Suppose the Equation of the S.H.O. is given by

X =a sin wt

X <
or, a = sin wt

Velocity of the particle, v, = % = aw cos wt

Momentum, p, = maw cos wt

or, = CcOos wit

mwa

2 p2
o2
Therefore, =— + ——

=1
a (maw)2

So, the phase trajectory is an ellipse as shown in Fig. 1.1 having semi-major
and semi-minor axes as ‘a’ and ‘mwa’ respectively.

Px

Fig. 1.1 The phase trajectory of a one-dimensional S.H.O.

Problem Find the phase trajectory of a particle of mass m and energy E moving

along the x-axis in the force free region between two rigid walls at x = 0 and

x=L

Solution: For motion along +ve x-direction, p, =V2mE = constant [as pf/2m =F ]
Thus, for reverse direction it will be p, = —V2mE = constant

So, the phase trajectory is the line segment parallel to x-axis as shown in

Fig. 1.2 on next page.
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Fig.1.2 The phase trajectory of a particle of mass m and energy E

For a single particle moving in 3-dimensions, 6 co-ordinate axes for x; y; z;
P Py P, are needed. For N-particles in 3-dimensions, the phase space will be
6N-dimensional. Such a 6N-dimensional space is called I'-space. So, the set
{g;; p;} can now be understood as a point in a 6N-dimensional phase space.
A point defined by 6/N-coordinates (x|}, X1, X371, - X1n» Xops Xans Pi1s P21s P31
... P1n» Pan» P3y) 1n this phase space describes particular value of position and
momentum values of all N-particles. Hence, a definite point in this phase space
exactly corresponds to one microscopic state of motion of the whole system. The
trajectory in phase space is described by Hamilton’s equations:

99; _oH 9pi _ OH

a o 0 T aq

where, the Hamiltonian H{g,(?), p(#)} in general, corresponds to the (possibly
time-dependent) total energy of the system. In a closed system, in which the
Hamiltonian does not depend explicitly on time, the total energy E = H is a
conserved quantity. Therefore, the phase trajectory always moves on a constant-
energy curve or multi-dimensional surface.

1.3 VOLUME OF AN ELEMENTARY CELL

The phase space can be subdivided into small elements of sides dx, 8y and &z and
moments 8p,, dp,, 6p,. The volume of each elementary cell is given by,

H = 6x-8y-8z-3p,- Op,-dp..
Now, according to Heisenberg’s uncertainty principle,
dx-dp, ~h
dy-dp, ~h
8z-8p, ~h
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Therefore, H = h’

According to Heisenberg’s uncertainty principle, in phase space, the co-
ordinates of a particle can be specified only to the extent that the particle under
consideration has the position and momentum lying within the element of phase
space of volume n.

If the system consists of molecules, each having, f degrees of freedom, then
the state of each molecule is determined by f generalized co-ordinates ¢, g5, ...,
gy and f generalised momenta p, p,. ..., py. In this case, the phase space of each
molecule has 2f dimensions, and a volume element d¢ = dq,dq, ... dg; dp,dp, ...

dpy.

1.4 CONCEPT OF ENSEMBLE

Each microstate of a N-particle gas is described by a point in the 6N-dimensional
phase space. So, if we consider all possible microstates which the gas can have,
we will have a large collection of points in the phase space. This collection of
phase points in the phase space, of all possible microstates of the system, is called
an ensemble. So, one can imagine each point in the phase space representing
an imaginary replica of the system, each in a different microstate. This set of
imaginary copies of the system, each in a different microstate, is referred as
an ‘ensemble’. When the gas moves randomly in time, in the phase space, it
basically goes from one phase point to the next, in a specific succession. Any
macroscopic quantity of the gas which we measure, is not measured at once.
Rather it is measured over a finite time, which is very long with respect to the
time-scale of motion of the particles of the gas. So, the measured quantity is
actually the quantity averaged over time.

The basic idea of statistical mechanics is the following. In making a time-
average of a quantity, one should basically look at different values the quantity
takes, as it travels from one microstate to the other, during its time evolution. And
then one should take an average of all the values of the quantity. White taking an
average, it is not important what the sequence from one microstate to the other is.
One can just take the phase points of the ensemble, over which the system goes,
and take the average. So, the time average can be replaced by the average over the
whole ensemble.

To enable one to replace time-average by ensemble-average, some conditions
have to be fulfilled. Firstly, average over the ensemble implicitly assumes that
the system passes all phase points during its time evolution. Secondly, it is also
assumed that all microstates are equally likely to be encountered. If the system
spends more time in certain microstates, and less time in other microstates, our
assumption will breakdown. This assumption corresponds, which is called the
‘ergodic hypothesis’. The ergodic hypothesis states that, over a long period of
time, the time spent by a system in some section of the phase space with the same
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energy is proportional to the phase-volume of this section, i.e., all accessible
microstates are equiprobable over a long period of time. Ergodic hypothesis is an
important base of statistical mechanics. However, it cannot be proved in general.
It is assumed to be true, which finds validation in the fact that statistical mechanics
turns out to be a successful theory, in agreement with experimental results.

We consider a thermally insulated isolated system consisting of gas in a box.
The system will be subjected to the constraint that the total energy remains
constant during any change of time. It can be considered to be in equilibrium
when it is left for a long time. Within the system we can assume that it is found
with equal probability in each of its accessible microstates. This is nothing but the
postulate of equal a priory probability. This postulate is at the very strong pillar
of statistical mechanics. Now each macrostate can have numerous microstates.
There are general ways by which the gas particles can accommodate, by various
arrangements of particles and their momenta. So, there are a lot of microstates
associated with a single macrostate. Now each microstate is equally probable,
but we never actually see a gas occupying the quantity of volume of its container.
Why so? It happens because the number of microstates associated with the
gas occupying the whole volume are overwhelmingly large, compared to the
microstates associated with the gas occupying only partial (say half) volume of
the box.

One can get an idea of the numbers concerned in such situations through the
following given example. We consider an array of four non-interacting magnetic
moments, each of which can only take values +1 or —1. Now, assume that
each magnetic moment is free to turn over up and down, i.e., +1 or —1. We can
designate the total magnetic moment of the array to assign a macrostate. There is
only one microstate corresponding to the macrostate with total magnetic moment
4, which is nothing but all positive or all in up positions i.e., (+1 +1 +1 +1)
giving four. Now, we consider the macrostate with total magnetic moment zero,
the microstates associated in this case are (+1 +1 -1 1), (=1 =1 +1 +1), (+1
—14+1-1),(+1-1-1+1),(=1+1+1-1),(=1+1-=1+1) in terms of their
orientation of magnetic moments. So, there are 6 microstates corresponding to
total magnetic moment zero, whereas only one microstate with magnetic moment
4. So, we can easily see that if there were 40 magnetic moments, there would still
be only one microstate associated with total magnetic moment 40. However, the
number of microstates associated with total magnetic moment zero in that case,
will be tremendously large. So, in a system of 40 magnetic moments which are
freely orienting up and down, one will almost never see magnetic moment 40, and
the magnetic moment will appear to be zero or very small almost all the time.

In the basis of above argument, it can be concluded that equilibrium state is one
in which the number of microstates is maximum. In practice, the system will go
over all microstates, but it will be mostly found in certain microstates. Three types
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of ensembles namely, microcanonical, canonical and grand canonical are mostly
used. The microcanonical ensemble is a collection of essentially independent
assemblies having the same energy E, volume V, and number of particles N.
The canonical ensemble is a collection of essentially independent assemblies
having the same temperature 7, volume V, and number of particles N. The grand
canonical ensemble is a collection of essentially independent assemblies having
same temperature 7, volume V, and a chemical potential [1. The different types of
ensemble and the method of ensemble in developing statistical mechanics will be
discussed in a separate chapter in detail.

1.5 ENSEMBLE AVERAGE

Anensemble average is the average at a fixed time over all elements in an ensemble.
It is difficult to prove the exact equivalence of the ensemble average and the time
average over a single system. However, one can hope that the ensemble average
would approximate the time average, if the following essential conditions are
satisfied:
(i) The system should be a macroscopic system consisting of a large number
of molecules/particles (N — o) so that we can randomise in a true sense
the microscopic variables.

(i1) The number of imagined elements (M) that form the ensemble at one time
is large (M — <o) enough so that they can truly represent the range of states
available to actual system over a long period of time (# — o). In statistical
mechanics, we shall use the terms system and ensemble in the above sense
only.

We consider a set of N points distributed arbitrarily along a line. If x(i) is the
distance of the i point from the origin, then the average distance from the origin

is given by,
| N .
=g X, X

The line is now supposed to be divided into cells, and N; is the number of
points in the i™ cell located at x(i), then we can write,

X= % Z,- N, x(i)

If the distribution is given in the form of a continuous function N(x),

And naturally, N = N(x)dx
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In general, if F(x) is any arbitrary property of the points, then its average value
is given by,

T PN
F=l=

400
[ Neoax
It can be shown that the average over ensemble is same as average over time.

1.6 MICROSCOPIC AND MACROSCOPIC SYSTEMS

What is the distinction between different sizes of the systems that we are going
to examine! We shall call a system microscopic, if it is of atomic dimensions,
or smaller. Where as a system is called macroscopic when it is large enough
to be visible in the ordinary sense. This is not a precise definition. The precise
definition depends on the number of particles in the system, say N. A system is
macroscopic if,

L«l

JN

For example, if we want to keep the statistical error below one percent, then
a macroscopic system should contain at least ten thousand particles. Any system
containing less than this number of particles would be regarded as essentially
microscopic, and, hence, statistical point of view cannot be applied to such a
system without intolerable error.

1.7 MACRO AND MICROSTATES

A microstate of an ensemble (a collection of similar, non-interacting, independent,
imagined systems is called ensemble by Gibbs) may be defined by the specification
of the individual position of phase points for each system or molecule of the
ensemble. So, each arrangement of specified system or molecules with their
representative points in particular cells is called a microstate.

According to gross observable properties, or macroscopic behavior, it is
immaterial which particular system or molecules are occupying the specified
cells. Therefore, a macrostate of the ensemble may be defined by the specification
of phase point in each cell i.e., by specifying the numbers only and overlooking
the identities of the system or molecules.

A change of phase points between two cells in phase space shifts the position of
unit cell because the microstate changes. But according to macroscopic properties,
this exchange makes no difference. Thus, there may be many different microstates
which may correspond to the same macrostate. This will be more cleare from an
example in the following section.
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Let there be cell —1, cell -2, cell -3 ... cell —i in phase space. Suppose, there
are three phase points a b ¢ in cell —1, four phase points d e f g in cell -2, two
phase points /4 k in and five phase points r s t u v in cell —i as shown in Fig. 1.3
below.

n =3 n,=4 ny=2 n=5

abe defg hk rstuv

cell-1 cell-2 cell-3 cell-i
Fig.1.3

The macrostate in the Fig. 1.3 is specified by merely giving the phase
points n; = 3, n, =4, ny = 2, n; = 5 of different cells. This also represents a
particular microstate by specifying the position of phase points abc in cell 1,
defg in cell 2 and so on. Now, if the two phase points @ and d from first two
cells are interchanged, then the microstate is changed because the positions
of two phase points are changed, whereas the macrostate remains the same as
the number of phase points in the cells remains the same. Similarly, with the
same macrostate we can consider different microstates. Thus, many different
microstates may correspond to the same macrostate.

1.8 NUMBER OF PHASE CELLS IN A GIVEN ENERGY RANGE

To handle many problems in statistical mechanics, it is necessary to know the
number of phase cells in a given energy range. So, we must have an idea about
this Suppose, in the energy range 0 to E, the possible values of momentum be
from O to p,,,,. Now, the space between the momentum range p, to p, + dp,. p,
to p, +dp, and p, to p_ + dp. is equal to dp dp dp.. which is equal to concentric
spherical shell volume between p to p + dp.

Therefore, dp dp dp, = 4np2dp [see Fig. 2.3 in the next chapter].

As the total volume of momentum space is a sphere of radius p,,,., we can
write,

mdp_\. dp, dp. = %Twﬁux

The energy E of a free particle is given by,

2
P max _

2m

Therefore, J] dp.dp,dp.= %n (2mE)*?
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Therefore, the volume in phase space J.J‘ dx dy dz dp, dp, dp, =V 4

mE)" 3

Where, V = '[U dx dy dz = volume of coordinate space.

Now, since the volume of phase cell is 4°, the number of cells in phase space
= Vin (2mE)*? x 1
3 n

Thus, the number of phase cells is proportional to E*,

1.9 PHASE SPACE DISTRIBUTION FUNCTIONS AND
LIOUVILLE’S THEOREM

For an ensemble with many members, each member having a different phase
space vector x corresponding to a different microstate, we need a way to tell, how
the phase space a vectors of the members in the ensemble will be distributed in the
phase space i.e., if we choose to observe one particular member in the ensemble,
what is the probability that its phase space vector will be in a small region dx
around a point x in the phase space at time ¢. This probability will be denoted as,

i, tydx
where, f(x, 7) is known as the phase space probability density or phase space

distribution function. It properties are as follows:
fx,1)=0

de f(x, 1) = Number of members in the ensemble.

Liouville’s Theorem: The total number of systems in the ensemble is a constant.
For a given volume V in phase space, this condition requires that the decreasing
rate of the number of systems from this region is equal to the flux of systems into
the volume. Let 71 be the unit normal vector to the surface of this region.

# das
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The flux through the small surface area element, dS is justn - X f(x, 1) dS. Then,
the total flux of the volume is obtained by integrating this over the entire surface
that encloses V:

Jds i-Gif (v, 1) = [ VG pe ) av
|4

which follows from the divergence theorem. V, is the 6N-dimensional gradient
on the phase space.

(s a)
" dpy 9q,dpy

"

On the other hand, the decreasing rate in the number of systems out of the
volume is,

d d
—— | dV(x,t)=— | dV— f(x,t
o 'I (x, 1) 'V[ Ey f(x,1)
Equating these two quantities gives,
. )
j AV V- (if (x, 1)) = - j av =[x
Vv Vv

But this result must hold for any arbitrary choice of the volume V, which we
may allow to reduce in size to zero so that the result holds locally, and we obtain
the local result:

2 f )+ V. -(if (x, 1) =0
ot :

But, VoGif(e,t)=xV f(x,0)+ f(x,n) V&

This equation is similar to an equation for a *hydrodynamic’ surge in the phase
space, with f(x, ) playing the role of a density. The quantity V,-x, being the
divergence of a velocity field, is known as the phase space compressibility, and it
does not vanish for a general dynamical system. Let us consider the phase space
compressibility for a Hamiltonian system, where in,

N
Vok=Y [V, 5+V, 4]

i=1



