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Preface

Concrete structures in severe environments include a variety of structures
in various types of environments. Although several deteriorating processes
such as alkali-aggregate reactions, freezing and thawing, and chemical
attack still represent severe challenges and problems to many important con-
crete structures, rapid development in concrete technology in recent years
has made it easier to control such deteriorating processes. Also, for new
concrete structures in severe environments, the applied concrete is normally
so dense that concrete carbonation does not represent any practical prob-
lem. For concrete structures in chloride-containing environments, however,
chloride ingress and premature corrosion of embedded steel still appear to
be a most difficult and severe challenge to the durability and performance
of many important concrete infrastructures. In recent years, there has also
been a rapid increase in the use of de-icing salt and rapid development on
concrete structures in marine environments.

In order to obtain increased and better control of chloride ingress and
corrosion of embedded steel, improved procedures and specifications for
proper combinations of concrete quality and concrete cover are very impor-
tant. Upon completion of new concrete structures, however, the achieved
construction quality typically shows high scatter and variability, and, in
severe environments, any weaknesses and deficiencies will soon be revealed,
whatever durability specifications and materials have been applied.
Therefore, improved procedures for quality control and quality assurance
during concrete construction are also very important.

To a certain extent, a probability approach to the durability design
can accommodate the high scatter and variability. However, a numerical
approach alone is not sufficient to ensure the durability. In order to obtain
a more controlled and improved durability, it is also essential to specify
performance-based durability requirements that can be verified and
controlled for proper quality assurance during concrete construction.
Documentation of achieved construction quality and compliance with the
specified durability should be the keys to any rational approach to more
controlled and increased durability and service life of concrete structures
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in severe environments. Better procedures for condition assessment and
preventive maintenance should also be essential, and such procedures
should help provide the ultimate basis for achieving more controlled dura-
bility and service life of concrete structures.

In recent years, an increased number of owners of concrete structures
have realized that even small additional costs, in order to obtain an
increased and more controlled durability beyond what is possible to reach
based on current concrete codes and practice, have been shown to be a very
good investment. However, increased and more controlled durability is not
only a technical and economic issue, but also an increasingly more impor-
tant environmental and sustainability issue. Although the present book is
mostly concerned with increased and more controlled durability from a
technical point of view, a brief introduction to life cycle costs and life cycle
assessment is also included.
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Chapter |

Historical review

When Smeaton constructed the famous lighthouse on Eddystone Rock at
the outlet of the English Channel during the period 1756-1759 (Smeaton,
1791), this was the first time a specially developed type of cement for a
severe marine environment was applied (Lea, 1970). When the structure
was demolished due to severe erosion of the underlying rock in 1877, this
structure had remained in very good condition for more than 100 years.
Since Smeaton reported his experience on the construction of this lighthouse
(Figure 1.1), all the published literature on concrete in marine environments
has made up a comprehensive and fascinating chapter in the long history
of concrete technology. During the last 150 years, a number of profession-
als, committees, and national authorities have been engaged in this issue.
Numerous papers have been presented to international conferences, such as
the International Association for Testing Materials in Copenhagen (1909),
New York (1912), and Amsterdam (1927); the Permanent International
Association of Navigation Congresses (PIANC) in London (1923), Cairo
(1926), Venice (1931), and Lisbon (1949); the International Union of
Testing and Research Laboratories for Materials and Structures (RILEM)
in Prague in 1961 and 1969; the RILEM-PIANC in Palermo in 19635; and
the Fédération Internationale de la Précontrainte (FIP) in Tibilisi in 1972.
Already in 1923, Atwood and Johnson (1924) had assembled a list of
approximately 3000 references, and still, durability of concrete structures
in marine environments continues to be the subject for research, discussion,
and international conferences (Malhotra, 1980, 1988, 1996; Mehta, 1989,
1996; Sakai et al., 1995; Gjorv et al., 1998; Banthia et al., 2001; Oh et al.,
2004; Toutlemonde et al., 2007; Castro-Borges et al., 2010; Li et al., 2013).

In all this literature, the various deteriorating processes that may affect
the durability and performance of concrete structures in severe environ-
ments have been extensively reported and discussed. Although a number of
deteriorating processes such as alkali-aggregate reactions, freezing and thaw-
ing, as well as chemical attack still represent a severe challenge and poten-
tial threat to many concrete structures, it is not the disintegration of the
concrete itself, but rather chloride-induced corrosion of embedded steel,
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Figure I.I' Front page of the report on the construction of the Eddystone Lighthouse,
written by John Smeaton in 1791. (Courtesy of the British Museum.)
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that appears to be the most severe and greatest threat to the durability and
performance of many important concrete structures. Already in 1917, the
problem with corrosion of embedded steel was pointed out by Wig and
Ferguson (1917) after a comprehensive survey of concrete structures in
U.S. waters.

In addition to conventional structures such as bridges and harbor struc-
tures, reinforced and prestressed concrete has already, for a long time, been
increasingly applied to a large number of very important ocean structures
and vessels. Of the total surface area of the globe, ocean water makes up
about 70%, and the inhabitable part of the remaining area is even smaller
and is becoming increasingly more populated. Since the need for more space,
raw materials, and transportation is steadily increasing, increasingly more
activities are being moved into ocean waters and marine environments.

Already in the early 1970s, the American Concrete Institute (ACI) came
up with a technological forecasting on the future use of concrete, where the
rapid development on the continental shelves was pointed out (ACI, 1972).
In this report not only structures related to oil and gas explorations but also
structures that would relieve land congestion were discussed.

At an international FIP Symposium on Concrete Sea Structures orga-
nized by Gosstroy in Thilisi in 1972 (Gosstroy, 1972), a great variety of
concrete structures that would play an increasing role for further activities
in ocean and marine environments were discussed. Such structures would
be of different types and categories, such as

Nonanchored freely floating structures, e.g., ships, barges, and containers
Anchored structures floating at water surface level, e.g., bridges, dry
docks, operation platforms, moorings, nuclear plants, airports, and cities
Anchored structures (positive buoyancy) floating below surface level,
e.g., tunnels

Bottom-supported structures (negative buoyancy) resting above sea-
bed level, e.g., tunnels and storage units

Bottom-supported structures (negative buoyancy) resting at or below
seabed level, e.g., bridges, harbor structures, tunnels, storage units, cais-
sons, operation platforms, as well as both tidal and nuclear power plants

The ACI forecasting pointed out the great potential for utilization of con-
crete as a construction material for marine and ocean applications in general
and for offshore oil and gas exploration in particular. In Norway, where
most of the offshore concrete construction has taken place so far, long tradi-
tions have existed on the utilization of concrete in the marine environment.
Already in the early 1900s, the two Norwegian engineers Gundersen and
Hoff developed and obtained a patent on the tremie method for underwa-
ter placing of concrete during the construction of the Detroit River Tunnel
between the United States and Canada (Gjerv, 1968). From 1910, when
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Figure 1.2 Open concrete structures are still the most common type of harbor struc-
tures built along the Norwegian coastline.

Gundersen came back to Norway and became the director of the new
contracting company AS Heyer-Ellefsen, his newly patented method for
underwater placement of concrete became the basis for the construction of
a new generation of piers and harbor structures all along the rocky shore
of the Norwegian coastline (Gjorv, 1968, 1970). These structures typically
consist of an open reinforced concrete deck on top of slender, reinforced
concrete pillars cast under water. Although the underwater cast concrete
pillars were gradually replaced by driven steel tubes filled with concrete,
this open type of concrete structure is still the most common type of harbor
structure being constructed along the Norwegian coastline (Figure 1.2).

Due to its very long and broken coastline with many fjords and numer-
ous inhabited islands, Norway has a long tradition on the use of concrete
as a construction material in marine environments (Figure 1.3). For many
years, this primarily included concrete harbor structures. Gradually, how-
ever, concrete also played an increasing role as a construction material for
other applications, such as strait crossings (Klinge, 1986; Krokeborg, 1990,
1994, 2001). In addition to conventional bridges (Figure 1.4), new concepts
for strait crossings such as floating bridges (Figure 1.5 and 1.6) emerged
(Meaas et al., 1994; Hasselo, 2001). Even submerged concrete tunnels have
been the subject for detailed studies and planning; one of several types of
design is shown in Figure 1.7 (Remseth, 1997; Remseth et al., 1999).

The rapid development that later took place on the utilization of concrete
for offshore installations in the North Sea is well known (Figures 1.8 and
1.9). Thus, since 1973, altogether 34 major concrete structures contain-
ing more than 2.6 million m? of high-performance concrete were installed
(Figure 1.10), most of which were produced in Norway. Also in other parts
of the world, a number of offshore concrete structures have been produced
in recent years, and so far, a total of 50 various types of offshore concrete
structures have been installed (Moksnes, 2007).



