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Finite element model

Frequency response function

Genetic algorithm
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Hybrid Monte Carlo

Markov chain

Monte Carlo dynamically weighted importance samplin
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Markov chain Monte Carlo

Metropolis—Hastings

Maximum likelihood

Maximum a posteriori

Nested sampling

Probability distribution function

Particle swarm optimisation

Simulated annealing

Shadow hybrid Monte Carlo

Separable shadow hybrid Monte Carlo
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Nomenclature

xii

SS Slice sampling

\AY% Velocity verlet

N Number of degrees of freedom

Zx Experimental data vector

Z; Analytical data vector

a Uncertain parameter vector

Dev(@) Deviance of @

Pp Posterior mean deviance parameter

S Structure’s sensitivity matrix

J Objective function

VA Evidence

X Acceleration

w Weighting matrix

H Hessian matrix

1 Unit matrix

n Step size used by the conjugate gradient technique
Vv Variance matrix

Q Diagonal matrix with diagonal elements of the natural frequencies
X; Chromosome vector or position vector

D Best position

Vi Velocity

d Dimension of the updated vector

R One-dimensional real domain

R" n-dimensional real domain

R m x n-dimensional real domain

T Transformation matrix

Vo, Covariance matrix of the updated vector @ at the jth iteration
Vz, Covariance of the measured data

P Probability function

D Experimental model data

P(0|D) The posterior probability distribution function
ap! Proposed probability distribution function
T,(-") Transition matrix

N, o) Normal distribution with mean g and variance o
P(-]9) Joint density

My Expectation value of the function f

b ith measured natural frequency

! ith measured circular natural frequency

N, Number of measured modes

fi ith analytical frequency obtained from the finite element model
J Imaginary unit of a complex number

[IA]l Euclidean norm of A

A Lagrange multiplier

K Bayes factor

E; Error vector



xiii

Nomenclature

E() Mean value

E(zz") Variance matrix of z

R, Normalisation constant ratio

X" The Fourier-transformed displacement
F" Force matrix

W Kinetic energy

Vv Potential energy

A% Gradient of V

H Hamiltonian function

Hy>y Shadow Hamiltonian function of order 2k
P Momentum vector

V() Gradient

Ky Boltzmann constant

T Temperature

Time step
Poisson bracket of two functions
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Introduction to Finite Element
Model Updating

1.1 Introduction

Finite element model updating methods are intended to correct and improve a numerical model
to match the dynamic behaviour of real structures (Marwala, 2010). Modern computers, with
their ability to process large matrices at high speed. have facilitated the formulation of many
large and complicated numerical models, including the boundary element method, the finite
difference method and the finite element models. This book deals with the finite element model
that was first applied in solving complex elasticity and structural analysis problems in aecronaut-
ical, mechanical and civil engineering. Finite element modelling was proposed by Hrennikoff
(1941) and Courant and Robbins (1941). Courant applied the Ritz technique and variational
calculus to solve vibration problems in structures (Hastings et al., 1985). Despite the fact that
the approaches used by these researchers were different from conventional formulations, some
important lessons are still relevant. These differences include mesh discretisation into elements
(Babuska et al.. 2004).

The Cooley—Turkey algorithms. which are used to speedily obtain Fourier transformations,
have facilitated the development of complex techniques in vibration and experimental modal
analysis. Conversely. the finite element model ordinarily predicts results that are different from
the results obtained from experimental investigation. Among reasons for the discrepancy
between finite element model prediction and experimentally measured data are as the following
(Friswell and Mottershead, 1995; Marwala, 2010: Dhandole and Modak, 2011):

» model structure errors resulting from the difficulty in modelling damping and complex
shapes such as joints, welds and edges:

» model order errors resulting from the difficulty in modelling non-linearity and often assum-
ing linearity:

Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and
Mechanical Engineering. First Edition. Tshilidzi Marwala, Ilyes Boulkaibet and Sondipon Adhikari.
© 2017 John Wiley & Sons. Lid. Published 2017 by John Wiley & Sons, Lid.
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()

model parameter errors resulting in difficulty in identifying the correct material properties;
« errors in measurements and signal processing.

In finite element model updating, it is assumed that the measurements are correct within cer-
tain limits of uncertainty and, for that reason, a finite element model under consideration will
need to be updated to better reflect the measured data. Additionally, finite element model updat-
ing assumes that the difficulty in modelling joints and other complicated boundary conditions
can be compensated for by adjusting the material properties of the relevant elements. In this
book, it is also assumed that a finite element model is linear and that damping is sufficiently
low not to warrant complex modelling (Mottershead and Friswell, 1993; Friswell and Motters-
head, 1995). Using data from experimental measurements, the initial finite element model is
updated by correcting uncertain parameters so that the model is close to the measured data.
Alternatively, finite element model updating is an inverse problem and the goal is to identify
the system that generated the measured data (Brincker ez al., 2001; Dhandole and Modak, 2010;
Zhang et al., 2011; Boulkaibet, 2014; Fuellekrug er al., 2008; Cheung and Beck, 2009; Mot-
tershead ez al., 2000).

There are two main approaches to finite element model updating, namely, maximum like-
lihood and Bayesian methods (Marwala, 2010: Mottershead er al., 2011). In this book, we
apply a Bayesian approach to finite element model updating.

1.2 Finite Element Modelling

Finite element models have been applied to aerospace, electrical, civil and mechanical engin-
eering in designing and developing products such as aircraft wings and turbo-machinery. Some
of the applications of finite element modelling are (Marwala, 2010): thermal problems, elec-
tromagnetic problems, fluid problems and structural modelling. Finite element modelling
typically entails choosing elements and basis functions (Chandrupatla and Belegudu, 2002;
Marwala, 2010). Generally, there are two types of finite element analysis that are used:
two-dimensional and three-dimensional modelling (Solin er al., 2004; Marwala, 2010).

Two-dimensional modelling is simple and computationally efficient. Three-dimensional
modelling, on the other hand, is more accurate. though computationally expensive. Finite elem-
ent analysis can be formulated in a linear or non-linear fashion. Linear formulation is simple
and usually does not consider plastic deformation, which non-linear formulation does consider.
This book only deals with linear finite element modelling, in the form of a second-order ordin-
ary differential equation of relations between mass, damping and stiffness matrices. A finite
element model has nodes, with a grid called a mesh, as shown in Figure 1.1 (Marwala,
2001). The mesh has material and structural properties with particular loading and boundary
conditions. Figure 1.1 shows the dynamics of a cylinder, and the mode shape of the first natural
frequency occurring at 433 Hz.

These loaded nodes are assigned a specific density all over the material, in accordance with
the expected stress levels of that area (Baran, 1988). Sections which undergo more stress will
then have a higher node density than those which experience less or no stress. Points of stress
concentration may have fracture points of previously tested materials, joints, welds and high-
stress areas. The mesh may be imagined as a spider’s web so that, from each node, a mesh
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Figure 1.1 A finite element model of a cylindrical shell

element extends to each of the neighbouring nodes. This web of vectors has the material prop-
erties of the object, resulting in a study of many elements.

On implementing finite element modelling, a choice of elements needs to be made and these
include beam, plate, shell elements or solid elements. A question that needs to be answered
when applying finite element analysis is whether the material is isotropic (identical throughout
the material), orthotropic (only identical at 90%) or anisotropic (different throughout the mater-
ial) (Irons and Shrive, 1983; Zienkiewicz, 1986; Marwala, 2010).

Finite element analysis has been applied to model the following problems (Zienkiewicz.,
1986; Marwala, 2010):

* vibration analysis for testing a structure for random vibrations, impact and shock:

* fatigue analysis to approximate the life cycle of a material or a structure due to cyclical
loading;

* heat transfer analysis to model conductivity or thermal fluid dynamics of the material or
structure.

Hlilou er al. (2009) successfully applied finite element analysis in softening material behav-
iour, while Zhang and Teo (2008) successfully applied it in the treatment of a lumbar degen-
erative disc disease. White er al. (2008) successfully applied finite element analysis for
shallow-water modelling, while Pepper and Wang (2007) successfully applied it in wind
energy assessment of renewable energy in Nevada. Miao er al. (2009) successfully applied
a three-dimensional finite element analysis model in the simulation of shot peening. Biirg
and Nazarov (2015) successfully applied goal-oriented adaptive finite element methods in
elliptic problems, while Amini et al. (2015) successfully applied finite element modelling in
functionally graded piezoelectric harvesters. Haldar et al. (2015) successfully applied finite
element modelling in the study of the flexural behaviour of singly curved sandwich composite
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structures, while Millar and Mora (2015) successfully applied finite element methods to study
the buckling in simply supported Kirchhoff plates. Jung et al. (2015) successfully used finite
element models and computed tomography to estimate cross-sectional constants of composite
blades. while Evans and Miller (2015) successfully applied a finite element model to predict the
failure of pressure vessels. Other successful applications of finite element analysis are in the
areas of metal powder compaction processing (Rahman ez al., 2009), ferroelectric materials
(Schrade et al., 2007), rock mechanics (Chen et al., 2009), orthopaedics (Easley er al.,
2007). carbon nanotubes (Zuberi and Esat, 2015), nuclear reactors (Wadsworth et al., 2015)
and elastic wave propagation (Gao et al.. 2015; Gravenkamp et al., 2015).

1.3 Vibration Analysis

An important aspect to consider when implementing finite element analysis is the kind of data
that the model is supposed to predict. It can predict data in many domains, such as the time,
modal, frequency and time—frequency domains (Marwala, 2001, 2010). This book is concerned
with constructing finite element models to predict measured data more accurately. Ideally, a
finite element model is supposed to predict measured data irrespective of the domain in which
the data are presented. However, this is not necessarily the case because models updated in the
time domain will not necessarily predict data in the modal domain as accurately as they will for
data in the time domain. To deal with this issue, Marwala and Heyns (1998) used data in the
modal and frequency domains simultaneously to update the finite element model in a multi-
criteria optimisation fashion. Again, whichever domain is used, the updated model performs
less well on data in a different domain than those used in the updating process. In this book,
we use data in the modal domain. Raw data are measured in the time domain and Fourier ana-
lysis techniques transform the data into the frequency domain. Modal analysis is applied to
transform the data from the frequency domain to the modal domain. All of these domains
include similar information, but each domain reveals different data representations.

1.3.1 Modal Domain Data

The modal domain expresses data as natural frequencies, damping ratios and mode shapes. The
technique used for extracting the modal properties is a process called modal analysis (Ewins,
1995). Natural frequencies are basic characteristics of a system and can be extracted by exciting
the structure and analysing the vibration response. Cawley and Adams (1979) used changes in
the natural frequencies to identify damage in composite materials. Farrar ef al. (1994) success-
fully used the shifts in natural frequencies to identify damage on an [-40 bridge. Other success-
ful applications of natural frequencies include damage detection in tabular steel offshore
platforms (Messina et al.. 1996, 1998), spot welding (Wang et al., 2008) and beam-like struc-
tures (Zhong and Oyadiji, 2008; Zhong er al., 2008).

A mode shape represents the curvature of a system vibrating at a given mode and a particular
natural frequency. West (1982) successfully applied the modal assurance criterion for damage
on a Space Shuttle orbiter body flap, while Kim et al. (1992) successfully used the coordinate
modal assurance criterion of Lieven and Ewins (1988) for damage detection in structures. Fur-
ther applications of mode shapes include composite laminated plates (Araijo dos Santos et al..
2006: Qiao et al., 2007), linear structures (Fang and Perera, 2009), beam-type structures (Qiao
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and Cao, 2008; Sazonov and Klinkhachorn, 2005). optical sensor configuration (Chang and
Pakzad, 2015), multishell quantum dots (Vanmaekelbergh ez al., 2015) and creep characterisa-

tion (Hao et al., 2015).

1.3.2  Frequency Domain Data

The measured excitation and response of the structure are converted into the frequency domain
using Fourier transforms (Ewins, 1995: Maia and Silva, 1997), and from these the frequency
response function is extracted. Frequency response functions have, in general, been used to
identify faults (Sestieri and D’Ambrogio, 1989: Faverjon and Sinou, 2009). D’Ambrogio
and Zobel (1994) used frequency response functions to identify the presence of faults in a truss
structure, while Imregun et al. (1995) used frequency response functions for damage detection.
Lyon (1995) and Schultz et al. (1996) used measured frequency response functions for struc-
tural diagnostics. Other direct applications of the frequency response functions include
the work of Shone er al. (2009), Ni et al. (2006), X. Liu et al. (2009), White et al. (2009)
and Todorovska and Trifunac (2008). Additional applications include missing-data estimation
(Ugryumova ef al., 2015). identification of a non-commensurable fractional transfer (Valério
and Tejado, 2015), as well as damage detection (Link and Zimmerman, 2015).

1.4 Finite Element Model Updating

In real life, it turns out that the predictions of the finite element model are quite different from
the measurements. As an example, for a finite element model of a simply suspended beam, the
differences between the model-predicticted natural frequencies and the measured frequencies
are shown in Table 1.1 (Marwala and Sibisi, 2005; Marwala, 2010). These results are for a
fairly easy structure to model, and they demonstrate that the finite element model’s data are
different from the measured data. Finite element model updating has been studied quite exten-
sively (Friswell and Mottershead, 1995: Mottershead and Friswell, 1993; Maia and Silva, 1997;
Marwala, 2010). There are three approaches used in finite element model updating: direct
methods, iterative deterministic and uncertainty quantification methods. Direct approaches
are computationally inexpensive, but reproduce modal properties that are physically
unrealistic.

Although the finite element model can predict measured quantities, the updated model is
limited in that it loses the connectivity of nodes, results in populated matrices and in loss of

Table 1.1 Comparison of finite element model and real measurements

Finite element Measured
Mode number frequencies (Hz) frequencies (Hz)
1 42.30 41.50
2 117.0 114.5
3 227.3 224.5
4 376.9 371.6




