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Preface

This book is the first of two which are effectively the ‘second edition’ of my
A Biologist's Mathematics, first published in 1977. Having regard to the needs
of biology students with respect to mathematical training and knowledge, it is
now considered desirable to have, on the one hand, a text containing only the
basic mathematical principles and methods that are mostly required by the
large majority of first and second year students, and on the other, a more
advanced book required by some final year undergraduates, postgraduates,
and research workers. The present book corresponds to the more elementary
-two-thirds of A Biologist’s Mathematics, while the sequel — 4 Biologist's
Advanced Mathematics is a largely new work, but incorporating the more
advanced sections of the former book.

After an introductory chapter on the role of mathematics in biology, the
book considers the fundamental properties of numbers, indices, and
logarithms, in Chapter 2. Chapter 3 is also a foundation chapter, dealing with
the basis of the geometrical interpretation of many aspects of mathematics
relevant to the biologist. A full multi-dimensional approach is adopted; and the
topics of location in space, the measurement of distances between points, and
linear functions and their geometric representation are covered, examples being
given of the biological use of each topic. Chapter 4 then considers non-linear
functions and their curves, including the Michaelis—Menten function and
allometric relationships, and also contains a section on some general properties
of curves to serve as an introduction to the following chapters on calculus.

The next three chapters deal with the calculus. Chapter 5 describes
principles and methods of the differential calculus, while Chapter 6 is
concerned with physical interpretation and usage. Chapter 7 deals with the two
aspects of integration: the indefinite integral and simple methods of integration,
and the definite integral.

Hitherto, the principal type of mathematical function used is the polynomial,
although other kinds of function of potential interest to the biologist are
introduced in Chapter 4. Exponential and related functions, which are of
outstanding importance to biologist and mathematician alike are described in
Chapter 9. Although so important, they are introduced relatively late in the
book for three reasons. Firstly, their mathematical properties are not as
straightforward as are those of polynomials, and it seems better to use the
mathematically simple polynomial functions to illustrate the principles and
methods of the calculus. Secondly, students often have difficulty in assimilating
the concept of the number e, but the difficulty is minimized if one can discuss e*
as a function whose gradient is always equal to the function itself. Thirdly, it is
convenient to define e by means of the exponential series. Accordingly, the



preceding chapter, Chapter 8, deals with mathematical series in their own right,
as well as serving as a prelude to the exponential series in Chapter 9. Part of
Chapter 8 also serves to round-off the elementary presentation of the calculus
with some introductory topics on differential equations. The material of
Chapter 10, while specific to plant science, is included in the book as it
illustrates so well a biological application of the calculus.

Anyone using this as a textbook may thus follow it through in its natural
order. There is one possible exception to this. Chapter 11 can be read at any
stage, since very little of it depends on material presented earlier in the book,
and some of the ideas now appear in school mathematics syllabuses. The
material will be needed at different times in biology courses at different
institutions, depending on the applications envisaged.

Mention of applications highlights a particular and ever-present difficulty in
teaching mathematics to biologists. Since, for the majority of such students,
mathematics is not in itself an interesting subject they are very concerned to see
the biological relevance of every mathematical topic discussed. Good biological
examples involving simple mathematics are very scarce. Biological phenomena
are so complex that problems which are not so oversimplified as to be
far-fetched require either complicated mathematics, or the application of
techniques of probability and statistics. Biological examples are presented
whenever possible, but there are sizeable portions of the book which are purely
on mathematics without any reference to biology. This is inevitable when
developing a theme. For example, the convergence of a series and the idea of a
limit have hardly any biological connotations, but these ideas lead on to the
differential calculus which does have considerable relevance in the life sciences.

Some exercises are provided at the end of each chapter. On the whole, these
are to give practice in the methods presented in the chapter, but, where
appropriate, exercises involving direct biological situations are presented.

Finally, it should be stated that the level of mathematical knowledge
assumed of the reader is that of GCE ‘O’ level, or equivalent, but where
possible, topics are developed from first principles.

I should like to thank Professor Arthur J. Willis for his careful reading of the

script and, as always, the staff of Edward Arnold for their friendly co-operation
and assistance.

Llanrhystyd, Aberystwyth
1983 D.R.C.
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1

Why mathematics in biology?

Probably ‘the most significant event that occurred during the rise of man to
pre-eminence, from being merely ‘another animal’, was the development and
use of language. At first, language was only spoken, but it did enable relatively
large quantities of information to be communicated from one individual to
another. More than that, language also provided a means for controlling and
monitoring thought itself; thus, language enables concepts to be manipulated
independently of the objects to which they refer, and later it becomes possible
to think logically without reference to any particular objects at all. Hence,
during the history of man, abstract thought became feasible, and from this
beginning arose philosophy.

If we had to select an area of application of language that has been
outstandingly successful, we should undoubtedly choose the expression of
human emotion. The evidence for this is clear when one considers the
achievements of oratory and literature. However, when it comes to conveying
scientific information, ordinary language is less successful. This is because it is
almost impossible to convey precise meaning, since most words in a language
have more than one meaning, even if these meanings differ only marginally.
Again, because of these various shades of meaning, a particular word means a
slightly different thing to different people. This is fine for the literary use of a
language where part of the onus for interpretation lies with the reader or
listener, but it is not so good for scientific use, where data and hypotheses must
be presented with complete unambiguity.

A long time, perhaps many thousands of years, after the rise of language, a
new kind of medium for transferring information from one individual to
another was evolving. This was at the time when the first of the ancient
civilizations — Egypt and Sumer — were flourishing. These civilizations, besides
being the architects and builders of large buildings and other monuments, also
developed a calendar. Such achievements required precision: precision in
measurement, precision in the subsequent manipulation of measurement, and
precision in the transmission of such data to other people. All this could be
achieved through another kind of language — the language of mathematics.

The mathematical language is just the opposite of ordinary language in that
its elements are precise and unambiguous, or at least should be. Every quantity
and symbol used can be accurately defined in terms of earlier quantities and
symbols already defined. Thus, mathematics is built up on precision and fact,



2 Why Mathematics in Biology?

whereas ordinary languages are, to some extent, based on the variability and
imprecision of human feelings and emotions.

The development of a science

The study of any science, viewed historically, consists of two main phases.
First it is studied almost exclusively from a qualitative point of view; but after
an initial period, quantitative methods come to be used increasingly. One of the
main reasons for this type of development, from the qualitative to the
quantitative, is that a science begins as an observational study, progresses to
an experimental, and finally to a theoretical study. At first, phenomena are
observed as they occur in nature; later scientific work consists of performing
experiments, drawing inferences from the results; and then trying to formulate
general laws. By their nature, some sciences have to make the jump from
observation to theory without the intervening benefits of experimentation.
Astronomy is an obvious example here, and it is remarkable that observational
and theoretical astronomy have proceeded side by side for several millennia.

At the present time, physicsis the science which is pre-eminent in the use of
mathematics. Many physical phenomena are rather less complex than are
those of other sciences, and the subject has progressed through the stages of
observation and experiment, and has emerged as a theoretical science. This is
not to say that observation and experiment are not still carried out in physics;
the main point is that physics has reached the stage in which there exists a
substantial body of theory, mathematical in nature, which has its origins in
observation and experiment. In physics at the present time, the experimental
and theoretical sides of the subject are of equal importance.

The phenomena of chemistry are often more complex than those of physics,
and this subject has not progressed quite as far as physics on the theoretical
side. Although there have been spectacular advances in theoretical chemistry in
recent years, chemistry as a whole is still, at present, somewhat more of an
experimental science than is physics.

In biology, the situation is very different. Firstly, biological phenomena
are highly complex; secondly, there is almost unlimited scope for pure
observation of biological phenomena. Hence it is mainly only in the present
century that biology has become an experimental science, whereas experimen-
tal work in the physical sciences has been undertaken for several hundred
years. As a result, it is only now that ‘theoretical biology’ is tentatively
emerging.

From the above remarks, it would seem that mathematical theory is the
ultimate aim in a scientific discipline. This is true; not for its own sake, but
because in the last resort the phenomena of nature can only be explained in the
precise terms of mathematics. Consider this example from physics.

Observation: a stick immersed in water at an angle to the surface (othér than
a right-angle) so that part of the stick is out of the water and part submerged;
the stick appears bent at the surface of the water.

Experiment: a vessel of water is set up on the laboratory bench, and rays of
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light are traced through the water for various angles of the incident beam; it is
found that at an air—water surface (assume that the vessel is made of very thin
glass) the ratio of the sine of the angle of the light beam on the air side of the
surface to the sine of the angle of the beam on the water side of the surface is
constant, and this constant ratio is called the refractive index.

Theoretical deductions: this experimental result can be used in conjunction
with facts gleaned from experiments on other phenomena of light, such as
reflection, diffraction, interference, to establish knowledge on the nature of
light. For instance, it has been found that the velocity of light in a dense
medium is less than in a sparse one. This latter experimental finding coupled
with the result of the refraction experiment can be analysed mathematically to
show that light travels in a wave form.

For this particular example, there is an obvious relationship between
observation, experiment, and theoretical deduction.” Such examples can be
multiplied many fold. In chemistry, we observe a particular reaction, and we
experiment to find out the exact conditions under which the reaction occurs.
When we then enquire why this particular reaction occurs and not some other,
it is necessary to look to the concepts of physical and theoretical chemistry,
both of which are founded on mathematics.

Whether or not all biological phenomena can be explained by the physical
sciences, or that ultimately it is found that the property of life is ‘something
extra’, it is already quite evident that the manifestations of ‘life’ can be
explained in terms of the physical sciences, particularly chemistry. Since the
physical sciences are based on mathematics, so also, indirectly, are the
biological sciences.

In summary, experimental results are usually in a quantitative form, even in
biology, and therefore sound theoretical deductions can normally only be made
by mathematical analysis. This is why, ultimately, mathematics is indispens-
able to any science; and so any scientist, whatever his or her speciality, should
have an adequate knowledge of mathematics.

Biology, mathematics, and statistics

The mathematical model

From the penultimate paragraph of the previous section, one might infer that
the utility of mathematics to the biologist is indirect, arising only after
experimental results have been interpreted by the concepts of physical science.
This, however, is not so. Mathematics is applied directly to the results of
biological observation and experiment in a similar manner to the physical
sciences but, because of the complexity of the phenomena, its application is
much more difficult. ]

In the present state of biological knowledge, it is impossible t apply a
rigorous mathematical analysis to a biological system, such as may be applied,
for example, to an electric circuit. What is done, however, is to construct a
mathematical model of the phenomenon in which we are interested. Certain
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assumptions about the system have first to be made, and put into mathematical
form. These assumptions are based on current knowledge obtained from
previous observations and experiments. Next, appropriate mathematical
methods are applied to the assumptions to achieve an end result which
simulates the system under study. The simulated result can then be compared
with what actually happens. If agreement between the theoretical result and the
observed happening is good, then we gain further insight into the process under
study; and moreover, we can use the model for predictive purposes. In any
science, an ultimate aim is prediction. For instance, in an electrical circuit we
can predict how the current will change for a given change of voltage, using a
simple mathematical model of the circuit (Ohm’s Law). In a biological system
that has been ‘described’ mathematically by means of a model, predictions of
what will happen under certain changes of conditions can also be made. If the
results of using the model do not agree with actuality, then one or more of our
basic assumptions must be wrong (assuming the absence of mathematical
errors!), and so, in a negative sense, our knowledge is still increased. An
example of the construction of a very simple mathematical model is given in
Chapter 6.

Statistics in biology

There is yet another complication to the would-be user of quantitative methods
in biology, and that is variability. The phenomenon of variability is not
confined to biology, but arises whenever experimental work is undertaken.
Even in the physical sciences, repetitions of a single experiment will give
slightly different results, e.g. measurement of the refractive index of a
substance, or the location of an end point in volumetric analysis. This kind of
variability, which is called experimental variability or experimental error,
arises solely because a human being attempts to measure something; the
something does not change, but the reactions of the human being during the
conduct of the experiment do change.

Experimental variability also.occurs in biology, but here it is considerably
augmented by the variability inherent in biological material. If we measure the
refractive index of a block of glass very carefully, we are safe in asserting that
our result is the refractive index of this kind of glass, under the conditions of
the experiment. On the other hand, if we measure the increase in height of a
sunflower plant over one day, we certainly cannot say that this is the growth
rate of sunflower plants in general, even under the same experimental
conditions. The same plant may have a noticeably different growth rate at an
earlier or later stage in its growth; and even if we take two plants which
germinated from the same source of seed at the same time, they will almost
certainly show different growth rates at any instant, aside from experimental
error. So to be able to make any sort of general statement about the growth
rate of sunflower plants of a given age and under defined conditions, we have to
measure several plants and take an average. This immediately raises the
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question as to how reliabic our result is, and this cannot be answered without
employing a branch of mathematics known as statistics.

Even when no experiment is involved and one is only trying to summarize
observations usefully =.d build a model from them, a simple mathematical
approach may not be very satisfactory because of the variability of biological
material. A good illustration is afforded by example 9.1 on page 154. Read the
general description of the situation through, note that a mathematical
expression is used to describe the situation, and then carefully read the
questions asked, each one of which obviously requires a single numerical
answer. Now, without worrying about how the answers were obtained, read the
last sentence of each of the three sections, and note that each answer is a
precise figure. Bearing in mind that a ‘cohort’ in this context is a natural stand
of similar-aged plants, it is quite obvious that these precise answers are only
statements of likely results around which actual results will deviate to a greater
or lesser extent. One immediately asks, ‘How much deviation can be
expected?’. The deterministic mathematical model that has been erected to
describe the situation in this example cannot answer such a question. If,
however, the same model had been set up, but with an added feature — a
probability structure — then we should be in a position to answer questions like
the above. The mathematical model would now be a stochastic model; it is
much more realistic, and more complex.

Both the mathematics of stochastic models, and of statistical methods for
the analysis of experiments, are based upon the same theoretical subject —
probability and statistics. It is a branch of applied mathematics in the broad
sense, not in the narrow sense that the term ‘applied mathematics’ is often used
to denote applications to physics Therefore, probability theory and statistical
science are based on mathemati s, and a good knowledge of the subject is
necessary for their study. In this ook, we shall not deal with probability and
statistics. Our concern will be witlh such topics in mathematics that are of a
general nature, topics that have direct biological relevance, and also those that
form a basis for the study of statistical science about which the modern
biologist needs to know. ‘
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Numbers, indices and logarithms

Broadly, this chapter is concerned with numbers and number systems.
Numbers, including those defined by symbols (letters), are fundamental to
mathematics, and so this chapter should be carefully read and understood even
if you find that much of it is revision of material already familiar.

Numbers

Imagine a straight line, as in Fig. 2.1, extending indefinitely in each direction.
The centre of this line will represent zero, and then at equal intervals on either
side of the zero we may mark off points which represent the whole numbers: 1,
2, 3; —1, —2, —3, etc. By convention, positive numbers increase from zero to
the right, and negative numbers increase from zero to the left. It is important to
note that the symbols +c0 and —co do not represent numbers, however large.
These symbols may be interpreted in different ways according to their context.
Here, they mean that the line extends each way indefinitely.

1 l 1
T T T &+
1

2 3

o ———4
I T,

ks 1
10
3 1
&
Fig. 2.1 The real number scale

Real numbers

Any number on the line defined above and shown in Fig. 2.1 is known as a real
number; in other words, such numbers can be represented physically on a
scale. Real nun bers are sub-divided further, as follows.

Integer An integer is a whole number, such as 3, 8, —45, 501.

Rational number A rational number is one that can be expressed as the
quotient (or ratio, hence the name) of two integers. Thus all whoie numbers are
rational, since each is the quotient of itself and 1. Also, many non-integers are
rational, such as 1.5 (=3), 2.3 (=}) and —1.8 (= —#}). A dot over a figure to
the right-hand side of the decimal point indicates that that figure recurs
indefinitely.

Irrational number An irrational number is one that cannot be expressed as
the quotient of two integers. Examples are /2, \/7, and 7. In general, a number
which is neither a terminating nor a recurring decimal is an irrational number.
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Thus, a real number may be either rational or irrational; and, if rational,
may be either an integer or a fraction.

It may be wondered just why it is necessary to classify the real numbers in
this way. The three types of real numbers that we have just considered have
evolved historically in the same way. The idea of number originated in the
counting of objects, giving rise to integers. The simple arithmetic processes of
addition, subtraction, and multiplication of integers always yield other integers.
However, the division of one integer by another does not necessarily give a
further integer; so, in order to give meaning to the arithmetic operation of
division, another type of number besides the integer has to be visualized. This
new kind of number is the rational number; and since whole numbers can
result by dividing one integer by another, then rational numbers must include
integers. When a rational number is a fraction, it either terminates (as in
4 = 1.5) or recurs (as in § = 2.3). Recurrence is not necessarily confined to one
figure: it may be a whole group of figures. Thus

§=0.85714285714285714

......

representation of §.

If we now return to the integers, squaring means multiplying an integer (or
any number) by itself, e.g. 3 x 3 =32=09. But the opposite process, taking a
square root, may give a number which is not an integer, a terminating fraction,
or a recurring fraction, i.e. it is not a rational number. To give meaning to the
square root, another class of numbers must be designated — the irrational
numbers. The main feature of these numbers is that they cannot be accurately
written in fraction or decimal form. For instance, /2 = 1.414213562 to 9
decimal places; and 7 = 3.14159 correct to 5 decimal places, or we can write
m = 3. The sign —~ means ‘approximately equal to’ and it is used here to show
that % might be used in place of z in numerical work. How good the
3.142857; and it is evident that 3 differs from z by approximately 0.00127 —a
difference of about 0.04% of the quantities under discussion. The decision as to
whether a particular approximation of an irrational number is adequate can
only be judged by prevailing circumstances, but the only ways in which
irrational quantities can accurately be referred to are in the forms /2 and =, for
example.

Complex numbers
Consider the following quadratic equation:
x2+2x+2=0 .0

ie. (x+12+1=0
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or x+ 1=4/-1
Hence x=—1+,/-1

Hitherto you have probably been told that /—1 does not exist. This is perfectly
true if the statement is taken to mean that /—1 is'not a real number. However,
a cursory glance at equation 2.1 does not reveal anything peculiar about it; it is
a perfectly normal quadratic equation, but it gives a solution containing a
quantity which is not a real number. Now although we can imagine the
existence of (say) two objects such as loaves of bread, 4 a loaf, or even /2 of a
loaf, the mind boggles at the thought of \/—1 of a loaf! This quantity cannot be
perceived simply because it is not a real number, and it does not exist on our
scale of real numbers as shown in Fig. 2.1.

The mathematician does not, however, dismiss equation 2.1 as an impossible
type; he invents a new class of numbers and calls them complex numbers. The
square root of minus one is known as an imaginary number, and is always
denoted by i. A complex number has the form a + ib, where a and b are real
numbers, and this is precisely the form that the roots (see page 46) of equation
2.1 take (herea=—1land b= 1or—1).

Although comnplex numbers are a creation of the mathematician’s mind, they
are extremely useful in the solution of practical problems. However, the subject
is beyond the scope of this book, and we shall restrict ourselves entirely to real
numbers.

The factorial of a positive integer

The factorial of an integer, n, is usually designated as n! (or occasionally as
1), and is defined as the product of # and all preceding integers down to 1;

ie. n=nn—-1DNMn~-2)...(2) (1) (2.2) »
For example 4!=4x3x2x1=24
and  61=6x5x4x3Ix2x1=720

Now although n! represents a real number, an integer in fact, it does not
rank with the types of number that we have been discussin, at we, e.g.
rational and irrational numbers. Rational numbers, for example, a’e a 1atural
sub-class of real numbers, and they have on ' given a special na.ne to
make it easy to think of them as a sub-class on . n. The factorial ¢f an
integer, on the other hand, is an example of n. .nematical notation. The
product represented by the factorial of an integer occurs often in mathematics,
and so the mathematician defines this product as we have already done, and
gives it a name (factorial) and a symbol (!). Mathematics abounds with
specialized notations and many will be introduced throughout this book.

Let us consider two properties of factorials. Firstly

n!=n(n— 1! (2.3)
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e.g. 6l=6x(5x4x3x2x1)=6x5!

This property is useful in cases where we need to evaluate factorials of
successive integers; there is no need to multiply right down to 1 each time. For
instance, we already know that 6! = 720;

hence MN=7x6!=7x 720 = 5040
8! =8 x 7! =8 x 5040 = 40 320 etc.

Evidently n! increases very rapidly as n increases.

The second property of factorials show that the factorial notation can be
used to denote the product of a set of successive integers even if they do not
extend down to 1. Consider

Tx6x5x4x3x2x1 7!
4x3x2x1 T4

The product 4 x 3 x 2 x 1 appears in both the numerator and the denom-
inator of the fraction, and so canceils out. The above example can be
generalized. Suppose we have two integers, n and r, and that r lies between 1
and n,i.e. 1 <r < n (1isless than r, and r is less than 7). Then

_nn—=D(®-2)...(1)  n
Cr=1D@F-2)..(1) (=1

Finally, note that factorials of numbers other than positive integers can be
defined, but this requires mathematical theory beyond that presented in this
book (see A Biologist’s Advanced Mathematics). There is, however, one result
of this theory that is important in elementary biomathematics, and that is

ol=1 (2.5)
I am afraid that this curious-looking statement will just have to be accepted.

Tx6x5=

nn—1)(n—2)...(r (2.4)

Indices

A number of the form a™ is defined as the number a raised to the power m; a is
usually called the base, and m the index, power, or exponent. For the moment,
we assume that m is a positive integer; then a™ means that a is multiplied by
itself m times. If we have an expression of the form a™ x 5" wherein the bases of
the two numbers are different, then the expression cannot be simplified further;
but if the bases are the same number, we may establish three laws. We shall do
this by means of specific examples, and so the table of values below will be
useful.

2= 2 3= 3
2= 4 3= 9
2=8 3= 27
2#=16 3= 8l

25=32 35=1243
26 =64 36=1729
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Law 1. Multiplication
Example ¥ X 2P = de 82282 = 25=20+9
Example 3! x 35=3 x 243 =729 = 36 =301+3)

So, generally a™a" =gt

Law 2. Division
Example 23/23 = 32/8=4—=22=20~3)
Example 33/32=27/9=3=3'=3G-2

So, generally a™/a" = qm-"

Law 3. Powers of indices
Example W x2P=(23)2=82=64 =26=20%X2
Example 32x32=(3%)2= 81 = 34=32x2)

So, generally (a™)" = a™"

(2.6)

(2.7)

(2.8)

The above three laws should be familiar to you already, and have been
derived assuming that m and n are positive integers. We now assume that these
laws are valid for all values of m and n; thus indices may be positive or negative
integers, zeros, or fractional numbers. Fractional numbers may by positive or
negative, and rational or irrational. We therefore need to find meanings for the

expressions a% a~™, and a™™".

Theorem 2.1 The value of a°%is 1
a®=a™ ™ = g"/a™ (Law2).But a™/a™=1.

Thus a®=1

Theorem 2.2 The value of a™is the reciprocal of a”
a"a " =qgmtmt = gm-m) — g0 (Law [)
But @® = 1 (Theorem 2.1); hence a™a—" = 1.

Therefore a™=1/q"™

(2.9)

(2.10)



