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Preface

Invariant differential operators play a very important role in the description of
physical symmetries — recall, e.g., the examples of Dirac, Maxwell, Klein-Gordon,
d’Almbert, and Schrodinger equations. Invariant differential operators played and
continue to play important role in applications to conformal field theory. Invariant
superdifferential operators were crucial in the derivation of the classification of posit-
ive energy unitary irreducible representations of extended conformal supersymmetry
first in four dimensions, then in various dimensions. Last, but not least, among our
motivations are the mathematical developments in the last 50 years and counting.

Obviously, it is important for the applications in physics to study these operators
systematically. A few years ago we have given a canonical procedure for the construc-
tion of invariant differential operators. Lately, we have given an explicit description
of the building blocks, namely, the parabolic subgroups and subalgebras from which
the necessary representations are induced.

Altogether, over the years we have amassed considerable material which was
suitable to be exposed systematically in book form. To achieve portable formats, we
decided to split the book in two volumes. In the present first volume, our aim is to
introduce and explain our canonical procedure for the construction of invariant dif-
ferential operators and to explain how they are used on many series of examples.
Our objects are noncompact semisimple Lie algebras, and we study in detail a fam-
ily of those that we call “conformal Lie algebras” since they have properties similar
to the classical conformal algebras of Minkowski space-time. Furthermore, we extend
our considerations to simple Lie algebras that are called “parabolically related” to the
initial family.

The second volume will cover various generalizations of our objects, e.g.,
the AdS/CFT correspondence, quantum groups, superalgebras, infinite-dimensional
(super-)algebras including (super-)Virasoro algebras, and (q-)Schrédinger algebras.
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1 Introduction

1.1 Symmetries

The notion of symmetry is a very old one. This is not surprising since there are many
natural objects and living beings

which possess symmetry. So since the beginning of civilization people were influenced
by this, and by 1200 B.C. symmetry was used extensively in Greek art. These were
usually geometric symmetries such as discrete translational symmetry (when some
figures were repeated from left to right (or top to bottom)); reflection symmetry with

respect to some axis
b q
5. 5 55G l )

(combined with translational symmetry); and discrete rotational symmetry (when a
figure is not changed upon rotation of a fixed angle).

From the arts the notion of symmetry passed to the sciences. For instance, some
symmetrical geometrical figures such as the circle and sphere were considered perfect
by the Pythagoreans.

Of course, it was clear that the real world is not exactly symmetric - e.g., take the
human body as a nonexact symmetry.

The first appearances of symmetry in physics were of geometric nature. It was nat-
ural to think that the fundamental constituents of nature should possess some of these
symmetries. Indeed, this is the case for many crystals and molecules, which in many
cases are symmetrically arranged with respect to reflections as well as discrete transla-
tions and rotations. To this day, the study of such discrete symmetries is an interesting
field of science.

The use of symmetries in mathematics and physics was enhanced when it was
fully realized that symmetries can be described mathematically by expressing a set
of transformations that leave a particular structure unchanged. This was especially
important for the use of continuous symmetries.
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Thus the set of transformations which leaves the sphere unchanged is the set of
rotations of arbitrary angle around the three axes in a three-dimensional Euclidean
space.

Mathematically, this is expressed as follows. The sphere of radius r (# 0) with
the center at the beginning of the coordinate system is described as the points with
coordinates xi, x3, x3 so that

geged-r,
which can be written in matrix form as

P x1, X2, X3) = (x1, X2, X3) (x1, X2, X3)'

X1
=(x1,x2,x3) | X2
X3

g
and the fact that the rotations are preserving the sphere may be expressed as

PO, xh, x5) = (X1, X2, X3) M(@) M()! (x1, X2, X3)" = lx1, X2, X3),

100
M@ M@)=L=|010],
001

where the 3 x 3 matrices M(p) depend on the three angles of rotation in the three
possible planes in three dimensions, which is symbolically denoted by ¢.

Using so-called Euler angles ¢y, ¢;, 9, the explicit dependence on the rotation
angles is shown as follows:

M(p) = My(1) M2(9) Mi(g2),

cosp -sing O 1 0 0
Mi(p)= | singp cosp O, Mx(9=|0 cosd -sind]|,
0 0 1 0 sind cos8

where M; and M, are rotations in the planes (x;, x2) and (x», x3), respectively, while the
rotations in the plane (xs,x;) are given by
cos9d O sind
M5(p) = Mi(/2) My (@) Mi(Bn/2)= | 0 1 0

—-sin9 0 cos 9
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We note now the properties

Mi(p) Mi(9) = Mi(p + @'),
Mi(p)' = Mi(-9),
Mi(p) Mi(@)' = Mi(@)' My(g) = Mk(0) = .

The above properties may be expressed by the mathematical statement that the ro-
tations form a group of transformations: A group G is a set of objects a, b, .. ., (e.g.,
transformations), for which there exists a rule by which each pair (a, b) of objects in
G corresponds again to an object, say ¢ in G, which is called the product of a, b, and
we simply write ¢ = ab. In the example above the product is the product of matrices.
Then there is a special object e, called unit element (above I3), such that for every
a in G we have ae=ea= a. Finally, for each element a there exists another element,
called the inverse of a and denoted by a’!, such that aa ! = a'a = e; above we have
M(p)' = M(p)". Note that in general ab # ba. Such groups, for which ab = ba for any
choice of a and b, are called Abelian groups, otherwise a group is called non-Abelian.
The group of rotations is not Abelian, e.g.,

Mi(p) Ma(9) = Ma(9) M1 (o),

as easily seen from Euler’s parametrization.

The rotation group in three-dimensional Euclidean space is denoted in the litet-
ature by SO(3). Analogously is defined the group of rotations SO(n) in n-dimensional
Euclidean space. From these only SO(2) is Abelian - cf. the matrices My for the rota-
tions in a fixed plane. The fact that the rotations in a fixed plane form by itself a group
is expressed by saying that SO(2) is a subgroup of SO(3). Clearly, if m < n then SO(m) is
a subgroup of SO(n).

The groups of rotations are special in another respect. They are Lie groups. In
general, this means that the elements of the group may be parametrized (the angles
above) so that it would become an analytic manifold (real analytic here); moreover,
the inverse element correspondence is an analytic function. More importantly for the
exposition here is the fact that intimately related to the notion of a Lie group is the
notion of a Lie algebra.

In general, the Lie algebra G of the Lie group G is first of all a linear space (over
some field of numbers F, here F = R — the real numbers, and below we shall also use
F = C - the complex numbers) of dimension equal to the dimension of G. It may be
identified with the tangent space of G at the unit element of G. Thus, for the group
S0(3) the basis of this linear space may be represented as

Ty = (% Mk((P)) lp=0
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or explicitly:
0 -1 0 0 0 O 0 0 1
=11 0 0], Ib=|10 0 -1}, T3=|0 O O
0O 0 O 0 1 O -1 0 O

The elements Ty are also called (infinitesimal) generators of the group.

As in every algebra, a Lie algebra has also a product between its elements. For
Lie algebras it is a special one called Lie bracket. Let X, Y, ... be elements of a Lie
algebra G, then [X, Y] denotes the Lie bracket of X, Y. It has the following special
properties which are characteristic of a Lie algebra (over F = R, C):

[X, Y] = -[Y, X]
X,[Y,Z]] +[Y,[Z,X]] + 2, [X, Y]] = O.

Properties above are called anticommutativity and Jacobi identity, respectively.

In our situation the basis elements Ty are matrices, i.e., we have the ordinary
associative product of matrices (for which we do not write the -), as well as the commut-
ators. Let us calculate the commutator of, e.g., T; and T5. This is a simple calculation
which gives

[T1, )] =ThT, - T,T; = Ts.
Analogously, one obtains
[T}, Tyl =&ueTe, Jo k, €=1,2,3,
where égji is totally antisymmetric and e153 = 1.

The Lie algebra of the group SO(n) is denoted by so(n). One may consider the same
basis elements as generators of a Lie algebra over the complex numbers C. Then the
analogs of so(n) are denoted by so(n, C). The notion of a subalgebra is analogous to
the subgroup notion, e.g., so(m), resp., so(m, C), is subalgebra of so(n), resp., so(n, C),
ifm<n.

Now for the algebra so(3, C) one may introduce the following basis:

X*E—iqu:Tz, HE—ZiT3.

These generators have the following commutators:

[H9X*]= izxt, [X+,X_]=H.



