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CHAPTER 1
THE SPACE L2

P{x)

§1. The Problem

In this part of the book, as in the first part, we shall be mainly concerned
with the approximation of an arbitrary function by means of polynomials.
However, a different criterion of accuracy will now be used.

Up until now we have considered the polynomial approximation of a func-
tion continuous in the interval [a, b] to be better the smaller the quantity

Dax [P(z) — f(z)]. (1)

We will now call a polynomial P(z) a good approximation to the function
f(z) if the value of the integral !

[ b [P(z) — f@)] dx @)

is small.

It is to be noted that the requirement of continuity of f(z) is a natural one
when we use criterion of accuracy (1). For when we approximate a function
f(z) arbitrarily close by means of polynomials according to this method, this
means that f(z) is the limit function of a uniformly convergent sequence of
polynomials and is hence itself continuous.

The matter is quite different when the approximation criterion involving
the integral (2) is used. For example, suppose that in the interval [—1, +1]
the function f(z) is given as follows:

0 for —1 =
@) = {1 for 0<

Although this function is discontinuous at z =
for which

0,
L.

IIA-1IA

x
z
0, there exist polynomials P(x)

+1 )
[ [P@) — j@) dz
1

becomes arbitrarily small.

1 We shall ordinarily use somewhat more general integrals than (2) as a criterion of
approximation of P(z) to f(z); however, in order not to complicate matters from the outset,
we will in the beginning adopt the criterion given in the text.

7
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8 I. THE SPACE L,

In order to show this, we define a function ¢(z) as follows:

0for —1<z=0
p(z) = 1
1 for szs1l

= ’
n

and in the interval [O, {I ¢(z) increases linearly from 0 to 1. It is obvious

that ¢(z) is continuous in [—1, 4+ 1], and moreover

1/n 1

+1
[ le@) — j@P dz = [ lo@) — f@)dz < .
=1 0
since |¢(x) — f(z)| £ 1. On the basis of the WEIERSTRASS theorem, there
exists a polynomial P(z) which satisfies the inequality

P@) — o(@)] < ——
V2n

for all z in the interval [—1, +1]. For this polynomial it follows that

+1

/ [P() — o)) dz < %

-1
From
(@ + b)* = 2(a® + b%)
it follows that
[P(z) — f(@)]? = 2{[P(z) — ¢(@)]? + [p(z) — f(2)*},
and therefore

4
n}

fﬁm—mﬁm<

-1

whence our assertion follows, since n may be chosen arbitrarily large.
Therefore, in our new approach the requirement of continuity of the func-
tion to be approximated is unnecessary. We shall therefore no longer impose
this restriction, but rather admit discontinuous functions as well. However,
these functions may by no means be entirely arbitrary; they must rather be
compatible with the existence of the integral (2). If we were to adopt the
RiEMANN definition of the integral, this would mean a restriction to those
discontinuous functions whose points of discontinuity form a set of measure
zero. Such a restriction however would not be intrinsic in the theory now to
be developed, but would rather stem from the integral concept employed.



2. THE WEIGHT FUNCTION. THE SPACE Li(z) 9

Therefore, in order to achieve the most complete presentation possible, we
adopt not the RIEMANN concept of the integral, but rather the LEBESGUE
concept. This, to be sure, requires that the reader be familiar with the
foundations of the theory of functions of a real variable, which we shall
presuppose in what follows.

§2. The Weight Function. The Space L,

Let a non-negative summable function p(z) be given on the interval [a, b].
In view of the special role which this function will play in what follows, we
will call it a weight function or briefly—a weight. We agree once and for all
to consider only those weights p(z) which assume the value zero only on a set
of measure zero; we shall henceforth make no special mention of this stipula-
tion.

Each weight function p(z) determines two classes of measurable functions
on [a, b]: the class L, () of those functions f(x) for which the product p(z)f(x)
is summable and the class L2, of those functions f(z) for which the product
p(z)f*(z) is summable. If p(z) = 1, we designate these classes simply by L
and L2 If in designating these classes it is necessary to indicate the interval
of integration as well, we write L, (»)([a, b]), L2, (la, b]), L([a, b]), and L*([a, b]).

As is shown by the inequality

ol s 11,
Lf,(,) is contained in Lp(;).

The inequality

[f(@)g()] =

further shows that the product of two functions in Lﬁ(,) belongs to L,(z).
This together with the identity

(f£9?2=1x2fg+¢*

implies that the sum and difference of two functions in L, also belong to
L2 . Finally, it is fundamental that with f(z) all functions ¢f (z), where c is
a constant, belong to L2,,.

@) + ¢’ @)
2

Theorem 1. If f(z) e L2, and g(z) « L), then the following two inequalities,
which we shall call the Schwarz inequalities, hold:

b b b o~
| [revene i <[ [rerwa][ odae]  ©
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10 I. THE SPACE L (,

\/ [ p@[f@) + g@)) de < \/ [r@f*@) dz + \/ [ p@)d (x) da. (4)

Proof. To prove inequality (3) we define
b
V(@) = [p@If@) + 9@) dz = A + 2Bz + C,
where

b b b
A = [p@)f @ dz, B=[p@f@ye@ dz, € =[p@)g’@) dz.

If A = 0, then f(z) = 0 (as is usual in the measure theory of functions, we
do not distinguish between two functions which differ only on a set of measure
zero), and inequality (3) becomes the equality 0 = 0. If A > 0, then (3) is
obtained by observing that ¥(z) = 0 and

B\ 4c -PB°
v (‘ Z) - 4
This completes the proof of (3). We now write (3) in the form
b b b
[ vl dz = [of de f pg” dz,

multiply by 2, and add to both sides the expression

/bzvf2 dx +/bp92 dx;

we hereby obtain the inequality

/bp(f-i- 9)%de < [\//bpf2dx -+ [/bpg2dx]2,

which is equivalent to (4).
With each function f(z) e L7 ,) we now associate the number

Il = \/ [p@r°@) do

which we call the norm of the function f(z); the norm has properties similar
to those of the absolute value of a number:
L ||fll 2 0, and ||f|| = 0 if and only if f = 0.
IL [lefll = le]-[lfll, and in particular || —f]| = [If]I.
IIL. |If + gll = lIfll + llgll-



3. CONVERGENCE IN MEAN 11

This norm concept makes it possible for us to introduce a useful geometric
interpretation.

Let E be a set of elements z, y, 2z, ... of any type whatsoever.

With each pair of elements z, y let a real number r(z, y) be associated with
the properties

1. 7(z,y) =2 0, and r(z, y) = 0 if and only iof z = .

2. r(z, 9) =1y, 2.

3. r(z,2) = r(z, y) + 1(y, 2).

When all these conditions are met, the set £ is said to form a metric space,
and r(z, y) is called the distance between z and y.
If we define the distance between two functions f and g in L2, as

r(f,9) = I — 4l

then LZ(,) becomes a metric space.

§3. Convergence in Mean

Definition 1. An element f of the space L2, is called a limit of a sequence
f1, foy f3y - - <y fay . . . of elements of the same space if

7%1_1}; fa = fll = 0.
We will usually abbreviate this relation
lim fo = f, fa = f,

although its function-theoretic meaning is actually
b
Iim [p@[ /) — J@)*dz = 0.

Convergence of this type we call convergence in mean with the weight func-
tion p(z).

Theorem 1. A sequence of elements of Lf,(z) cannot have two distinct limats.
Proof. Suppose f. — fand f, —¢. Passing to the limit in the inequality
0=[If—gll = lf = fall + Ifa — gll
gives the relation [|f — g|| = 0, and hence f = g¢.

Theorem 2. If a sequence of functions {f.(x)} converges in mean to the
Junction f(z), then it vs possible to select from it a subsequence {f,,} which con-
verges to f(x) almost everywhere.
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The proof of this theorem is based on the following important theorem
from function theory (which we do not prove here):
Theorem (B. Levi).? Given a sequence of non-negative measurable functions
u(z), wu2(z), us(z),

on the interval [a, b] such that

b
S [u@ iz <+,
k=1

then
lim u.(z) = 0

almost everywhere in [a, b].

Proof of Theorem 2. Choose a sequence of indices n; < n, < mnzg <-:--
such that

[p@tine ~ sen*as < 3

a

Then from the Levi theorem
lim p@)[fu(z) — f@)] =0

almost everywhere in [, b], and since p(z) is positive almost everywhere, the
proof of the theorem is completed.
Theorem 3. If f, —f, then ||f.|| — |if]|.
Proof. From
IAl = Ifall + 1= Fall, Nfall = 1A+ (12 =
one obtains
LISl = A= (1 = A,

whence the assertion follows.

Definition 2. A sequence {f,.} e L2, is called convergent in itself if to every
€ > 0 there corresponds an integer N such that n > N and m > N imply

[fn = full < & (5)

2 B. Levr stated the theorem in a more general context. Cf. I. P. Natanson [5], p. 141.



