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PREFACE

Traditionally, Advances in Computers, the oldest Series to chronicle the rapid
evolution of computing, annually publishes several volumes, each typically
comprising of five to eight chapters, describing new developments in the
theory and applications of computing. The theme of this 92nd volume is
inspired by the advances in information technology. Within the spectrum
of information technology, this volume touches a variety of topics ranging
from software to I/O devices. The volume is a collection of five chapters
that were solicited from authorities in the field, each of whom brings to bear
a unique perspective on the topic.

In Chapter 1, “Register-Level Communication in Speculative Chip
Multiprocessors,” Radulovi¢ et al. articulate the advantages of having
register-level communication as a part of the thread-level speculation mech-
anism in Chip Multiprocessors. In addition, this chapter presents a case study
addressing the Snoopy Inter-register Communication protocol that enables
communication of the register values and synchronization between the pro-
cessor cores in the CMP architecture over a shared bus. This chapter covers
issues such as thread-level speculation mechanism, thread identification, register
communication, and misspeculation recovery.

In Chapter 2, “Survey on System I/O Hardware Transactions and
Impact on Latency, Throughput, and Other Factors,” Larsen and Lee survey
the current state of high-performance 1/O architecture advances and
explore its advantages and limitations. This chapter articulates that the pro-
liferation of CPU multicores, multi-GB/s ports, and on-die integration of
system functions requires techniques beyond the classical approaches for
optimal [/O architecture performance. A survey on existing methods and
advances in utilizing the I/O performance available in current systems is
presented. This chapter also shows how I/O is impacted by latency and
throughput constraints. Finally, an option to improve I/O performance is
presented.

The concept of “Hardware and Application Profiling Tools” is the main
theme of Chapter 3. In this chapter, Janjusic and Kavi describe widely
acceptable hardware and application profiling tools along with a few classical
tools that have advanced in the literature. A great number of references are
provided to help jump-start the interested reader into the area of hardware
simulation and application profiling. The discussion about application

vii



viii Preface

profiling is interleaved with terms that are, arguably incorrectly, used inter-
changeably. Thus, this chapter makes an effort to clarify and correctly classify
tools based on the scope, interdependence, and operation mechanisms.

In Chapter 4, “Model Transformation Using Multiobjective
Optimization,” Mkaouer and Kessentini propose the application of genetic
algorithm for model transformation to ensure quality and to minimize the
complexity, two important conflicting parameters. Starting from the source
model, randomly a set of rules are generated and applied to generate some
target models. The quality of the proposed solution (rules) is evaluated by (1)
calculating the number of rules and matching metamodels in each rule, and
(2) assessing the quality of generated target models using a set of quality
metrics. This chapter reports on the validation results using three different
transformation mechanisms.

Finally, in Chapter 5, “Manual Parallelization Versus State-of-the-Art
Parallelization Techniques: The SPEC CPU2006 as a Case Study,”
Vitorovi¢ et al. attempt to articulate the importance of manual parallelization
of applications. This chapter studies various parallelization methods and
contemporary software and hardware tools for extracting parallelism from
sequential applications. It also attempts to identify typical code patterns
amenable for parallelization. As a case study, the SPEC CPU2006 suite is
considered as a representative collection of typical sequential applications.
The automatic parallelization and vectorization of the sequential C++
applications from the CPU2006 suite are discussed, and since these poten-
tials are generally limited, it explores the manual parallelization of these
applications.

I hope that you find these articles of interest and useful in your teaching,
research, and other professional activities. I welcome feedback on the
volume and suggestions for topics for future volumes.

ALt R. HUrRsoN
Missouri University of Science and Technology
Rolla, MO, USA
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Abstract

The advantage of having register-level communication as a part of the thread-level
speculation (TLS) mechanism in chip multiprocessors (CMPs) has already been clearly
recognized in the open literature. The first part of this chapter extensively surveys
the TLS support on the register level in CMPs. After the TLS mechanism is briefly
explained, the classification criteria are established, and along them, the most promi-
nent systems of this kind are elaborated upon focusing on the details about register
communication. Then, the relevant issues in these systems such as thread identification,
register communication, misspeculation recovery, performance, and scalability are com-
paratively discussed. The second part of the chapter represents a case study that
describes the snoopy interregister communication (SIC) protocol that enables commu-
nication of the register values and synchronization between the processor cores in the
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CMP architecture over a shared bus. The appropriate software toal, which creates and
annotates the threads from a sequential binary code of the loop-intensive applications,
is described. Also, the states of registers are defined and the protocol actions during
producer-initiated and consumer-initiated communication among the threads. Finally,
the ESIC protocol, an enhancement of the SIC protocol with more aggressive specula-
tion on the register values, is also presented and compared to the SIC.

LIST OF ABBREVIATIONS

AMA atlas multiadaptive

CMP chip multiprocessor

CRB communication register buffer

CSC communication scoreboard

ESIC enhanced SIC

EU execution units

FOPE fork-once parallel execution

FU functional unit

FW final write

GRF global register file

HW hardware

INV invalid

INVO invalid-others

IPC instructions per cycle

IRB intermediate register buffer

LC last-copy

LRF local register file

MAJC multiprocessor architecture for Java computing
MRF multiversion register file

MUCS multiplex unified coherence and speculation
NFW nonfinal write

PE processing element

PFW possibly final write

PRO propagated

PU processing unit

RAW read after write

RC ready-CRB

RR ready-released

RVS register validation store

RVT register versioning table

SH shared high

SIC snoopy interregister communication

SISC speculation integrated with snoopy coherence
SL shared low

SM speculative multithreaded

SPEC standard performance evaluation corporation
SRB store reservation buffer
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SS synchronizing scoreboard

SW software

TDS$ thread descriptor cache

TLS thread-level speculation

TU thread unit

UPD updated

VLIW very-long-instruction-word
VPS valid-possibly-safe

VPSF valid-possibly-safe-forwarded
VS valid-safe

VSO valid-safe-others

VU valid-unsafe

WAR write after read

WAW write after write

1. INTRODUCTION

In the previous decade, chip multiprocessors (CMPs) have emerged as a
very attractive solution in using an ever-increasing on-chip transistor count,

because of some important advantages over superscalar processors (e.g.,
exploiting of parallelism, design simplicity, faster clock, and better use of
the silicon space). Furthermore, nowadays, the memory wall, the power wall,
and the instruction-level parallelism (ILP) wall have made the CMP architec-
ture inevitable. In order to attain a wider applicability and being a viable alter-
native to the other processing platforms, besides running parallel workloads,
CMPs also have to be efficient in executing the existing sequential applications
as well. The technique of thread-level speculation (TLS) is a way to achieve
this goal. In the TLS, even possibly data-dependent threads can run in parallel
as long as the semantics of the sequential execution is preserved. A special
hardware support monitors the actual data dependencies between threads
in run time and, if they are violated, misspeculation effects must be undone.
The application threads can communicate between themselves through reg-
isters or through shared memory. This kind of system is known as speculative
chip multiprocessor [1-7].

The rest of this chapter is organized as follows. The short explanation of
the TLS technique illustrated with appropriate examples is given in Section 2.
An extensive survey of the most representative speculative commercial and
academic CMPs with the TLS support on the register level is presented in
Section 3 along the established classification criteria (register file organization
and interconnection topology). Section 4 brings a comparative analysis of
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relevant issues in these systems such as thread creation and speculation scope,
register communication and synchronization mechanisms, misspeculation
recovery, and performance and scalability. The case study in Section 5 presents
the snoopy interregister communication (SIC) protocol and its enhancement,
the enhanced SIC (ESIC) protocol, that enables the communication of reg-
ister values and synchronization between processor cores in a CMP over a
shared bus. Some conclusions are drawn in Section 6.

> 2. TLS IN CMPs

Multithreading is a technique that partitions a sequential program into
a number of smaller instruction streams (threads) that can be executed in par-
allel keeping different processor cores in a CMP simultaneously busy. If
these cores are simple superscalars, the small amount of the ILP can still
be exploited on top of the multithreading, since the ILP and multithreading
are orthogonal to each other. The best candidates for threads are basic blocks
(sequence of instructions with no transfers in or out except at the start and
the end), inner- or outer-loop iterations, subprogram calls, etc.

There are two multithreading approaches: explicit and implicit. The main
differences between explicit and implicit multithreading relate to thread dis-
patch, execution, and communication mechanisms, while the underlying
processor architecture and memory hierarchy are similar.

In explicit (nonspeculative) multithreading, the threads can be either
independent or interdependent but properly synchronized on each occur-
rence of data dependence, so they can be nonspeculatively executed concur-
rently in a correct order. The software imposes the fork primitives for thread
dispatch to specify interthread control dependencies. The explicit threads in
sequential applications can be identified by the advanced parallelizing com-
pilers or manual parallelization [2,7,8]. However, the identification of
explicit threads is not easy because of the problems with pointers, condi-
tional execution, etc. Even for numerical applications, the parallelizing com-
pilers have been successful only to a limited extent in directly explicit
multithreading. The parallelizing compilers are very conservative during
thread identification, because they assume the existence of interthread
dependencies whenever they cannot guarantee their independence even
where interthread dependencies are not very likely. As illustrated in
Fig. 1.1, if the values in arrays L and K are dependent on input data, the com-
piler cannot determine whether or not loop iterations access distinct array
elements, and hence, it marks the loop as serial.
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for (i=0; i<N; i++) {

o= ALLL] + Iteration J Iteration J+1 Iteration J+2
: =AM+ .. w=A[2] + ... .. = A[5] +...
: RAW violation :
ALKl = ... * ¢
1 A[5] = ... Al2] = ... Al6] =...

Figure 1.1 Example of the possibly dependent loop iterations. This figure is taken from
[2] with permission from the copyright holder.

Consequently, CMPs cannot efficiently handle general-purpose sequen-
tial applications even with the sophisticated compilers in explicit multi-
threading. The problem can be solved by exploiting the implicit
(speculative) multithreading. The implicit threads are identified in the appli-
cation either during the compile time or during the run time with hardware
support and can be (but less likely) interdependent. These threads can be
executed speculatively in the CMP with some software or hardware support
that can detect and correctly resolve interthread dependencies [2,7,9].

In such a system, the threads run in parallel on the different processors
speculatively as long as their dependencies are not violated. If no violation
occurs, the thread finishes and commits. In case of misspeculation, the thread
that violates the dependence and all its successor threads are squashed and
later reexecuted with correct data. The speculation hardware (thread iden-
tification, dependence prediction and detection, and data value prediction)
guarantees the same result of execution as in a uniprocessor. This technique
is referred to as TLS. The speculative thread architecture for mostly func-
tional languages was first proposed in [1] where hardware is used to ensure
the correct execution of parallel code with the side effects. Later on, the
TLS technique was employed in a number of different CMP architectures
(e.g., the Multiscalar is one the earliest tightly coupled multiprocessors fully
oriented towards speculative execution [7]).

The speculative parallelism can be found in many sequential applications
(e.g., [10]). The TLS provides a way to parallelize the sequential programs
without a need for a complex data dependence analysis or explicit synchro-
nization and to exploit the full potentials of CMP architecture in execution
of general sequential applications. The threads are committed in the order in
which they would execute sequentially, although they are actually executed
in parallel. However, the TLS and synchronization are not mutually exclu-
sive. In order to improve the performance, explicit synchronization can be
used when the interthread dependencies are likely to occur.
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The ideal memory system within hardware support for speculative exe-
cution should consist of the fully associative, infinite-size L1 caches
intended to keep the speculative states. They should operate in write-back
mode to prevent any change in the sequential state held in the L2 cache
unless the thread is committed. When the speculative thread i performs
a read operation, the speculative hardware must return the most recent
value of data. If it is not found in the L1 cache of the processor that exe-
cutes the speculative thread i, then the most recent value is read from a
processor executing a thread j that is less speculative than thread i. If the
value is not found in the caches of the processors executing the less spec-
ulative threads than thread i, the data are read from the L2 cache or from
memory.

More precisely, an adequate hardware TLS support imposes five require-
ments: (a) data forwarding between parallel threads; (b) detecting read after
write (RAW) hazards; (c) safe discarding of speculative state(s) after viola-
tions; (d) retiring speculative writes in the correct order, write after write
(WAW) hazards; and (e) providing the memory renaming, write after read
(WAR) hazards.

Firstly, in case of true data sharing between threads, when a later thread
needs shared data, an earlier thread has to forward the most recent value.
Sometimes, in order to minimize stalling, the producer thread sends updated
data in advance on nondemand basis to the successor threads.

The RAW hazard occurs when a later thread prematurely reads data.
Therefore, a situation when more speculative thread first reads a value that
is later updated by some predecessor thread must be detected. It is usually
resolved by squashing a thread that caused the violation and executing it
again with valid data.

In case of violation, the permanent state must not be corrupted and all
changes made by the violating thread must be made void. Usually, specula-
tive state is held only in the private L1 cache and permanent state in the L2
cache, so the effects of misspeculation are easy to discard.

When a later thread writes to the same location before an earlier thread
updates it (WAW hazard), this write must be seen by other threads in the
correct program order. This can be achieved by allowing the threads to
update the permanent state after committing strictly in the program order.

Finally, an earlier thread must never read a value produced by a later
thread (the WAR hazard). This is ensured by keeping the actual data in
the L1 cache that cannot be reached by earlier threads. An illustration for
some of described situations is presented in Fig. 1.2.
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Original sequential
threads Speculatively parallelized threads

Forwarding
from write:

Violation —
read too early

To later
threads

Time

Figure 1.2 An example of data dependencies between the speculative threads. This
figure is taken from [7] with permission from the copyright holder.

CMP with the TLS support is a high-performance and cost-effective
alternative to complex superscalar processors. It has been shown that a spec-
ulative CMP of comparable die area can achieve performance on the integer
applications similar to the superscalar processor [7]. However, the hardware
and software support for speculative execution is not sufficient to ensure that
a CMP architecture performs well for all applications. The notorious poten-
tial problems with the TLS are the following: (a) a lack of parallelism in the
applications, (b) hardware overheads (a large amount of hardware remains
unutilized when CMP runs a fully parallel application or a multiprogrammed
workload), (c) software overheads in managing speculative threads, (d) an
increased latency of interthread communication through memory, and (e)
a wasted work that must be reexecuted in case a violation occurred.

Although the speculative parallelism can be exploited by software means
only (e.g., [11-13]), most of the TLS systems employ the hardware support
usually combined with the software support. There are three major approaches
in the design of the speculative CMPs with the TLS hardware support.

The first one is related to the CMP architectures completely oriented
towards exploiting speculative parallelism, for example, Multiscalar [14],
Multiplex [8], Trace [15], speculative multithreaded (SM) [16], Multipro-
cessor Architecture for Java Computing (MAJC) [17], MP98 (Merlot) [18],
and Mitosis [19]. These systems support interthread communication
through both registers and shared memory and they usually have significant
and effective hardware and software support for efficient speculative
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execution. However, when these CMPs run a true parallel application or a
multiprogrammed workload, a large amount of that speculative support
remains ineffective.

The second approach is oriented towards generic CMP architectures
with a minimal added support for speculative execution, for example, Hydra
[7] or STAMPede [20]. Such a system achieves the interthread communi-
cation through shared memory only. The limited hardware support in these
CMPs is sufficient for correct speculative execution since they rely on com-
piler support and software speculation handlers to adapt the sequential codes
for speculative execution. However, the necessity of source code
recompilation can be a serious problem, especially when the source code
is not available.

JACOMA [9], Atlas [21], NEKO [22], and Pinot [23] belong to the third
approach that tries to combine the best of previous two approaches. They
still enable the threads to communicate through both registers and memory
as in the first approach, but they have mainly generic CMP architectures
with modest hardware (HW)/SW support for speculative execution as in
the second approach. Consequently, they can be considered as more
cost-effective in running the true parallel or multiprogramming workloads.

Some studies about the impact of communication latency on the overall
performance of the speculative CMP argued that a fast communication
scheme between the processor cores may not be required and that inter-
thread communication through the memory is fast enough to minimize
the performance impact of the communication delays [7,9,24,25]. The lim-
itation of the interthread communication through the memory simplifies the
overall design but the need for source code recompilation is still a disadvan-
tage for this group of CMPs.

The support for register-level communication introduces an additional
complexity in the system (fast interconnect for exchanging the values, rel-
atively complex logic, etc.). However, earlier studies have shown that
register-level communication pays back by avoiding overhead of
memory-level communication that requires the instructions to (a) explicitly
store and load the communicated values to and from memory and (b) syn-
chronize the communicating threads. It was concluded in [26] that register-
based communication is 10 X faster and synchronization is 60 X faster than
corresponding memory counterpart mechanism. The impact of having
memory-level communication only on the overall performance degradation
is evaluated in [27]. It was demonstrated that the communication through L2
cache (and not through registers) in a CMP with four superscalar cores (up to
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four-issue) incurs performance degradation of up to 50%. This is a strong
support for employment of interregister communication mechanisms in
the most of representative CMPs.

3. REGISTER COMMUNICATION MECHANISMS
IN SPECULATIVE CMPs

The main goal of this chapter is to present an overview of the various
CMP systems with TLS support on register level found in the open literature.
There is a variety of issues in reviewing the hardware and software support
for interthread register communication such as organization and implemen-
tation of the register file, interconnection topology, register communication
protocol, thread identification, recovery from misspeculation, and compiler
and other software tool support. The organization of register file(s) has a
profound impact on the mechanisms of synchronization and communication
of the register values between on-chip processor cores in speculative CMPs.
Therefore, it is adopted as the main classification criterion for this presenta-
tion. Three different approaches can be recognized: distributed (local) register
files, unified shared (global) register file, and hybrid design that combines
both local register files (LRFs) and a global register file (GRF) (Fig. 1.3).

Traditional microprocessors have been mostly designed with a GRF
shared by multiple functional units (FUs), which in turn increases the

Register file organization in speculative CMPs

—

Distributed register files

Global and distributed Global register file

register files
Ring-based: Bus-based: Bus-based: Point-to-point:
Trace Mp98 (Merlot)
Multiscalar IACOMA
Multiplex Mitosis MAJC
SM
Atlas
NEKO
Pinot

Figure 1.3 Register file organization in speculative CMPs.
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number of register file read/write ports and, hence, leads to complex wir-
ing, affects the cycle time, and increases latencies. In order to support
higher degrees of instruction-level parallelism (ILP) and thread-level par-
allelism (TLP), the hardware implementation cost of a design with a central
register file and a large and complex operand bypass network grows rapidly.
In extremely small feature sizes and highly parallel processor designs like a
CMP, a shared register file must be replaced with distributed file structures
with local communication paths to alleviate the problems with a large
number of long interconnects between the register file and operand bypass
structure. This is the reason why the exclusive use of shared register file is
scarce. Distributed register organizations scale efficiently compared to the
traditional shared register file organization since they significantly reduce
area, delay, and power dissipation. Consequently, almost all systems either
employ distributed approach only or combine it with small shared register
file [28-31].

Another influential design parameter is interconnection topology
between cores on register level and it is adopted as a secondary classification
criteria. The ring is a main design choice for the operand bypass network on
register level in Multiscalar, Multiplex, SM, Atlas, NEKO, and Pinot (see
Fig. 1.3). It is a natural choice for interconnection since processor cores dur-
ing speculative execution primarily communicate with their two nearest
neighbors—produced register values are sent to the more speculative core
and consumed register values come from the less speculative core. The
bus is another choice that is employed in Trace, IACOMA, and Mitosis.
The simple bus architecture would be sufficient to handle a small number
(4-8) of processor cores, but more cores or faster ones would require higher
bandwidth, which in turn demands either more buses or hierarchy of local
and global buses. Finally, in systems with GRF, MP98 (Merlot), and MAJC,
the point-to-point networks are used as an operand bypass network for reg-
ister value communication.

General data, architecture details, and register communication mecha-
nisms of the speculative CMPs with the support for register-level commu-
nication, grouped by organization of register files and interconnection
topology, are presented in this section.

3.1. Speculative CMPs with Distributed Register File

In almost all systems of this kind, LR Fs are interconnected by a unidirec-
tional or bidirectional ring except IACOMA, which uses shared bus for reg-
ister communication.



