‘ up_da\ePhO\oDescmm‘
(descriptions \ength > \oa:;o y
| document ge\E\emen\B{\;)\

M WP iy

" updateAllimages() |
S A
e (1 <10)4
elementld = ¥\
elementldBig = ¥\
(page * 9 +1- | < photos length) {
documen\geiE\emen\B\;\d\ clementid) v ®
document ,ge\E\emen\B\;\Gk elementid®q

\ §

|8
document.9

C++

The Programming
Language

etElementBy\dl elementid

Waylo
yvlon Warren = ELarsen & Keller

C+ +: The Programming Language

C++ is a computer language or program language. It provides low-level
memory manipulation and is also used for object-oriented, imperative and
generic programming features. C++ has helped develop many other
languages like Java, C#, and D. This book presents the complex subject of
C++ in the most comprehensible and easy to understand language. The
topics included in it are of utmost significance and are bound to provide
incredible insights to students. Some of the diverse topics covered in this
text address the varied branches that fall under this category. Those in
search of information to further their knowledge will be greatly assisted by
this textbook.

Waylon Warren pursued his PhD. in Programming Language from
Cornell University, United States. He has been the recipient of two awards
for his research works in the field of programming languages especially
C++. Warren has authored and edited more than 57 articles, journal
papers and book chapters in this field. He is a renowned lecturer of
undergraduates programs and travels extensively for educating students
across the globe.

ISBN 978-1-63549-158-6

= | arsen & Keller . ‘

www.larsen-keller.com

DBS-BM

OO

09L1472515

Warren C++: The Programming Language

= arsen & Keller

C++: The Programming
L anguage

Edited by
Waylon Warren

HlLarsen & Keller

C++: The Programming Language
Edited by Waylon Warren
ISBN: 978-1-63549-158-6 (Hardback)

© 2017 Larsen & Keller

= Larsen & Keller

Published by Larsen and Keller Education,
5 Penn Plaza,

19th Floor,

New York, NY 10001, USA

Cataloging-in-Publication Data

C++ : the programming language / edited by Waylon Warren.
p. cm.
Includes bibliographical references and index.
ISBN 978-1-63549-158-6
1. C++ (Computer program language).
I. Warren, Waylon.

QA76.73.C153 C15 2017
005.133--dc23

This book contains information obtained from authentic and highly regarded sources. All chapters are
published with permission under the Creative Commons Attribution Share Alike License or equivalent. A
wide variety of references are listed. Permissions and sources are indicated; for detailed attributions, please
refer to the permissions page. Reasonable efforts have been made to publish reliable data and information,
but the authors, editors and publisher cannot assume any responsibility for the vailidity of all materials or
the consequences of their use.

Trademark Notice: All trademarks used herein are the property of their respective owners. The use of any
trademark in this text does not vest in the author or publisher any trademark ownership rights in such
trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by
such owners.

The publisher’s policy is to use permanent paper from mills that operate a sustainable forestry policy.
Furthermore, the publisher ensures that the text paper and cover boards used have met acceptable
environmental accreditation standards.

Printed and bound in China.

For more information regarding Larsen and Keller Education and its products, please visit the publisher’s
website www.larsen-keller.com

C++: The Programming
Language

g-) 5/""’ A O

[-
£ ~1 .
N CANC

C++ is a computer language or program language. It provides low-level memory
manipulation and is also used for object-oriented, imperative and generic programming
features. C++ has helped develop many other languages like Java, C#, and D. This
book presents the complex subject of C++ in the most comprehensible and easy to
understand language. The topics included in it are of utmost significance and are
bound to provide incredible insights to students. Some of the diverse topics covered
in this text address the varied branches that fall under this category. Those in search
of information to further their knowledge will be greatly assisted by this textbook.

A detailed account of the significant topics covered in this book is provided below:

Chapter 1- Programming language is a computer language aimed at communicating
instructions to a device, particularly a computer. C++ is one of these programming
languages, which has imperative and object oriented programing features. This text
guides the reader in having an in depth understanding of C++.

Chapter 2- There are a number of programming languages which are related to
C++. Some of these are C, Ada, CLU and ALGOL 68. All these languages are well
structured, imperative and object oriented. This section strategically encompasses
and incorporates the major components and key concepts of all the programming
languages that are related to C++.

Chapter 3- C++ has a number of programming languages; some of these languages
are C++03, C++11, C++14 and C++17. C++03 is the standard version of C++ globally
whereas C++11 is the standard version of C++. The following chapter helps the reader
in understanding all the types of C++.

Chapter 4- CLI is a programing language, which was created by Microsoft. It was
created with the intention of replacing the managed extensions for C++. Some other
extensions of C++, like Cilk was created with the purpose of programming languages
for multithreaded parallel computing. This section also focuses on some aspects of
C++, aspect C++, CLIL

Chapter 5- Computer programming has a feature called copy elision. Copy elision is a
method which is essential to eliminate the unnecessary coping of objects. Templates
(C++) and decltypes are other prominent techniques used in C++. The text elucidates
all the tools and methods of C++.

VIIl Preface

Chapter 6- Subroutine is a sequence of programming which is assigned to perform
precise tasks, packaged as a unit. Exception safety on the other hand is a set of
guidelines that can be used by clients when handling safety in any programming
language, specifically C++. This chapter strategically encompasses and incorporates
the methods and tools of C++, providing a complete understanding.

Chapter 7- Generic programming has software such as Ada, Delphi, Eiffel, Java and
C# whereas metaprogramming writes programs with the skill to treat programs as
their data. Which means if a data is being analyzed it can simultaneously be modified
also. C++ programming is best understood in confluence with the major topics listed
in following chapter.

Chapter 8- Generic programming is a style of computer programming where the
algorithms written in generic programming are written in terms of types to-be-
specified-later. The other diverse aspects of C++ are metaprogramming, compatibility
of C and C++, criticism of C++ and Sieve C++ Parallel programming system. This
topic will provide an integrated understanding of C++ programming language.

Chapter 9- C++ Standard Library is a collection of classes and functions. This
collection is written in the core language. The topics discussed in this text are C++
string handling, functional (C++), sequence container (C++) and standard template
library. The diverse aspects of C++ Standard Library have been carefully analyzed
in this chapter.

It gives me an immense pleasure to thank our entire team for their efforts. Finally
in the end, I would like to thank my family and colleagues who have been a great

source of inspiration and support.

Editor

Table of Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Preface

Introduction to C++
i C++
ii. Programming Language

Programming Languages Related to C++
I. C (Programming Language)
ii. Ada (Programming Language)
iii. CLU (Programming Language)
iv. ALGOL 68

Types of C++ Programming Language
i. C++03

ii. C++11

ii. C++14

iv. C++17

Language Extensions of C++
i. Managed Extensions for C++
il. AspectC++
iii. C++/CLI
iv. C++/CX
v. Cilk

Techniques and Features of C++
i. Copy Elision
ii. Template (C++)
iii. Input/Qutput (C++)
iv. Decltype

Methods and Tools of C++
i. C++ Classes
ii. Subroutine
iii. Exception Safety
iv. Rule of Three (C++ Programming)
v. Trait (Computer Programming)
vi. Charm++

Various C++ Compilers
i. C++Builder
ii. IBM XL C/C++ Compilers

33
33
52
68
70

101
101
101
146
153

156
156
164
165
168
171

182
182
184
190
196

201
201
217
232
233
237
242

248
248
254

VI Contents

Turbo C++

iv. Norcroft C Compiler
v. Watcom C/C++

Vi.

Visual C++

Chapter 8 Diverse Aspects of C++ Programming Language

i.
ii.
iii.
iv.
V.

Generic Programming
Metaprogramming

Compeatibility of C and C++

Criticism of C++

Sieve C++ Parallel Programming System

Chapter 9 C++ Standard Library: An Integrated Study

i.
ii.
iii.
iv.
V.

C++ Standard Library
C++ String Handling
Functional (C++)
Sequence Container (C++)
Standard Template Library

Permissions

Index

256
257
258
262

269
269
295
299
305
311

314
314
320
323
327
345

Programming language is a computer language aimed at communicating instructions
to a device, particularly a computer. C++ is one of these programming languages, which
has imperative and object oriented programing features. This text guides the reader in
having an in depth understanding of C++.

SEECARES TR I R

C++ is a general-purpose programming language. It has imperative, object-oriented
and generic programming features, while also providing facilities for low-level memory
manipulation.

It was designed with a bias toward system programming and embedded, resource-con-
strained and large systems, with performance, efficiency and flexibility of use as its
design highlights. C++ has also been found useful in many other contexts, with key
strengths being software infrastructure and resource-constrained applications, includ-
ing desktop applications, servers (e.g. e-commerce, web search or SQL servers), and
performance-critical applications (e.g. telephone switches or space probes). C++ is a
compiled language, with implementations of it available on many platforms and pro-
vided by various organizations, including the Free Software Foundation (FSF’s GCC),
LLVM, Microsoft, Intel and IBM.

C++ is standardized by the International Organization for Standardization (ISO),
with the latest standard version ratified and published by ISO in December 2014
as ISO/IEC 14882:2014 (informally known as C++14). The C++ programming lan-
guage was initially standardized in 1998 as ISO/IEC 14882:1998, which was then
amended by the C++03, ISO/IEC 14882:2003, standard. The current C++14 stan-
dard supersedes these and C++11, with new features and an enlarged standard
library. Before the initial standardization in 1998, C++ was developed by Bjarne
Stroustrup at Bell Labs since 1979, as an extension of the C language as he wanted
an efficient and flexible language similar to C, which also provided high-level fea-
tures for program organization.

Many other programming languages have been influenced by C++, including C#, D,
Java, and newer versions of C (after 1998).

2 C++: The Programming Language

History

In 1979, Bjarne Stroustrup, a Danish computer scientist, began work on the predeces-
sor to C++, “C with Classes”. The motivation for creating a new language originated
from Stroustrup’s experience in programming for his Ph.D. thesis. Stroustrup found
that Simula had features that were very helpful for large software development, but
the language was too slow for practical use, while BCPL was fast but too low-level to
be suitable for large software development. When Stroustrup started working in AT&T
Bell Labs, he had the problem of analyzing the UNIX kernel with respect to distributed
computing. Remembering his Ph.D. experience, Stroustrup set out to enhance the C
language with Simula-like features. C was chosen because it was general-purpose, fast,
portable and widely used. As well as C and Simula’s influences, other languages also
influenced C++, including ALGOL 68, Ada, CLU and ML.

Bjarne Stroustrup, the creator of C++

Initially, Stroustrup’s “C with Classes” added features to the C compiler, Cpre, includ-
ing classes, derived classes, strong typing, inlining and default arguments.

In 1983, C with Classes was renamed to C++ (“++” being the increment operator in
C), adding new features that included virtual functions, function name and operator
overloading, references, constants, type-safe free-store memory allocation (new/de-
lete), improved type checking, and BCPL style single-line comments with two forward
slashes (//). Furthermore, it included the development of a standalone compiler for
C++, Cfront.

In 1985, the first edition of The C++ Programming Language was released, which be-
came the definitive reference for the language, as there was not yet an official standard.
The first commercial implementation of C++ was released in October of the same year.

In 1989, C++ 2.0 was released, followed by the updated second edition of The C++
Programming Language in 1991. New features in 2.0 included multiple inheritance,
abstract classes, static member functions, const member functions, and protected
members. In 1990, The Annotated C++ Reference Manual was published. This work

Introduction to C++ 3

became the basis for the future standard. Later feature additions included templates,
exceptions, namespaces, new casts, and a boolean type.

After the 2.0 update, C++ evolved relatively slowly until, in 2011, the C++11 standard
was released, adding numerous new features, enlarging the standard library further,
and providing more facilities to C++ programmers. After a minor C++14 update re-
leased in December 2014, various new additions are planned for 2017 and 2020.

Etymology

According to Stroustrup: “the name signifies the evolutionary nature of the changes
from C”. This name is credited to Rick Mascitti (mid-1983) and was first used in De-
cember 1983. When Mascitti was questioned informally in 1992 about the naming, he
indicated that it was given in a tongue-in-cheek spirit. The name comes from C’s “++”
operator (which increments the value of a variable) and a common naming convention

of using “+” to indicate an enhanced computer program.

During C++’s development period, the language had been referred to as “new C” and “C
with Classes” before acquiring its final name.

Philosophy

Throughout C++’s life, its development and evolution has been informally governed by
a set of rules that its evolution should follow:

e It must be driven by actual problems and its features should be useful immedi-
ately in real world programs.

e Every feature should be implementable (with a reasonably obvious way to do so).

e Programmers should be free to pick their own programming style, and that
style should be fully supported by C++.

« Allowing a useful feature is more important than preventing every possible mis-
use of C++.

e It should provide facilities for organising programs into well-defined separate
parts, and provide facilities for combining separately developed parts.

o No implicit violations of the type system (but allow explicit violations; that is,
those explicitly requested by the programmer).

e User-created types need to have the same support and performance as built-in

types.

o Unused features should not negatively impact created executables (e.g. in lower
performance).

4 C++: The Programming Language

e There should be no language beneath C++ (except assembly language).

e C++ should work alongside other existing programming languages, rather than
fostering its own separate and incompatible programming environment.

e If the programmer’s intent is unknown, allow the programmer to specify it by
providing manual control.

|

St arnal are s 7 atinr
anaaraization

C++ is standardized by an ISO working group known as JTC1/SC22/WG21. So far, it
has published four revisions of the C++ standard and is currently working on the next
revision, C++17.

Year C++ Standard Informal name
1998 ISO/IEC 14882:1998 C++98
2003 ISO/IEC 14882:2003 C++03
2011 ISO/IEC 14882:2011 C++11
2014 ISO/IEC 14882:2014 C++14
2017 to be determined C++17
2020 to be determined C++20

In 1998, the ISO working group standardized C++ for the first time as ISO/IEC 14882:1998,
which is informally known as C++98. In 2003, it published a new version of the C++ stan-
dard called ISO/IEC 14882:2003, which fixed problems identified in C++98.

The next major revision of the standard was informally referred to as “C++0x”, but it
was not released until 2011. C++11 (14882:2011) included many additions to both the
core language and the standard library.

In 2014, C++14 (also known as C++1y) was released as a small extension to C++11,
featuring mainly bug fixes and small improvements. The Draft International Standard
ballot procedures completed in mid-August 2014.

After C++14, a major revision, informally known as C++17 or C++1z, is planned for
2017, which is almost feature-complete.

As part of the standardization process, ISO also publishes technical reports and speci-
fications:

e ISO/IECTR 18015:2006 on the use of C++ in embedded systems and on perfor-
mance implications of C++ language and library features,

e ISO/IECTR 19768:2007 (also known as the C++ Technical Report 1) on library
extensions mostly integrated into C++11,

e ISO/IEC TR 29124:2010 on special mathematical functions,

Introduction to C++ 5

ISO/IEC TR 24733:2011 on decimal floating point arithmetic,

o ISO/IEC TS 18822:2015 on the standard filesystem library,

o ISO/IECTS 19570:2015 on parallel versions of the standard library algorithms,
e ISO/IEC TS 19841:2015 on software transactional memory,

e ISO/IEC TS 19568:2015 on a new set of library extensions, some of which are
already integrated into C++17,

o ISO/IECTS 19217:2015 on the C++ Concepts

More technical specifications are in development and pending approval, including con-
currency library extensions, a networking standard library, ranges, and modules.

The C++ language has two main components: a direct mapping of hardware features
provided primarily by the C subset, and zero-overhead abstractions based on those
mappings. Stroustrup describes C++ as “a light-weight abstraction programming lan-
guage [designed] for building and using efficient and elegant abstractions”; and “offer-
ing both hardware access and abstraction is the basis of C++. Doing it efficiently is what
distinguishes it from other languages”.

C++ inherits most of C’s syntax. The following is Bjarne Stroustrup’s version of the Hel-
lo world program that uses the C++ Standard Library stream facility to write a message
to standard output:

#include <iostream>
int main ()
{
std::cout << “Hello, world!\n”;

}

Within functions that define a non-void return type, failure to return a value before
control reaches the end of the function results in undefined behaviour (compilers typi-
cally provide the means to issue a diagnostic in such a case). The sole exception to this
rule is the main function, which implicitly returns a value of zero.

i Yf'\ Q""I"m:?:*-w:

As in C, C++ supports four types of memory management: static storage duration ob-
jects, thread storage duration objects, automatic storage duration objects, and dynamic
storage duration objects.

6 C++: The Programming Language

Static Storage Duration Objects

Static storage duration objects are created before main() is entered and destroyed in
reverse order of creation after main() exits. The exact order of creation is not specified
by the standard (though there are some rules defined below) to allow implementations
some freedom in how to organize their implementation. More formally, objects of this
type have a lifespan that “shall last for the duration of the program”.

Static storage duration objects are initialized in two phases. First, “static initializa-
tion” is performed, and only after all static initialization is performed, “dynamic ini-
tialization” is performed. In static initialization, all objects are first initialized with
zeros; after that, all objects that have a constant initialization phase are initialized
with the constant expression (i.e. variables initialized with a literal or constexpr).
Though it is not specified in the standard, the static initialization phase can be com-
pleted at compile time and saved in the data partition of the executable. Dynamic
initialization involves all object initialization done via a constructor or function call
(unless the function is marked with constexpr, in C++11). The dynamic initialization
order is defined as the order of declaration within the compilation unit (i.e. the same
file). No guarantees are provided about the order of initialization between compila-
tion units.

I'hread Storage Duration Objects

Variables of this type are very similar to static storage duration objects. The main dif-
ference is the creation time is just prior to thread creation and destruction is done after
the thread has been joined.

Automatic Storage Duration Objects

The most common variable types in C++ are local variables inside a function or block,
and temporary variables. The common feature about automatic variables is that they
have a lifetime that is limited to the scope of the variable. They are created and poten-
tially initialized at the point of declaration and destroyed in the reverse order of cre-
ation when the scope is left.

Local variables are created as the point of execution passes the declaration point. If
the variable has a constructor or initializer this is used to define the initial state of the
object. Local variables are destroyed when the local block or function that they are de-
clared in is closed. C++ destructors for local variables are called at the end of the object
lifetime, allowing a discipline for automatic resource management termed RAII, which
is widely used in C++.

Member variables are created when the parent object is created. Array members are
initialized from o to the last member of the array in order. Member variables are de-
stroyed when the parent object is destroyed in the reverse order of creation. i.e. If the

