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Preface

This book is an outgrowth of my teaching experience. It is written for undergraduate students
of mechanical engineering. Besides, it would also be useful to the postgraduate students of
mechanical engineering. It comprehensively covers the topics prescribed in the syllabi of
different universities/institutes. The course contents have been organized in such a way that
the general requirements of the students are fulfilled. Having observed that the students face
difficulty in understanding clearly the basic principles, fundamental concepts and theory without
a proper explanation of the topics, a conscious effort has been made to stress the points where
students generally make mistake. A lucid pattern, both in terms of language and content, has
been adopted throughout the book.

The book is divided into 14 chapters. Chapter 1 is on introduction to vibration. Chapters
24 deal with undamped and damped free vibrations and harmonically excited vibration of
single-degree-of-freedom systems. Chapter 5 discusses the vibration measuring instruments
and support excitation. Chapters 67 describe the two- and multidegree-of-freedom systems.
Chapter 8 explains the torsional vibrations. Chapters 9-10 are devoted to the vibration analysis
of continuous system and approximate numerical methods of the multidegree-of-freedom
systems. Chapters 11-13 cover the nonlinear and self-excited vibrations, random vibration and
vibration under general forcing conditions. The last Chapter 14 discusses the characteristics,
effects and control of industrial noise. Besides, an appendix on convolution integral is also
given at the end.

The text is supported by a large number of solved examples to illustrate the concepts
discussed. At the end of each chapter, practice questions are given to reinforce the student’s
understanding of the subject matter.

I am much indebted to my colleagues and professors of other engineering colleges of
Kerala who gave valuable suggestions and insight in writing this book. My special thanks to
Dr. A. Samson, Professor, College of Engineering, Trivandrum who gave valuable guidance in
preparing this book. I am also thankful to Professor J. Benjamin (retired Professor of TKM
Engineering College, Kollam) whose continuous encouragement and support helped me a lot in
writing this manuscript. I am very much thankful to Mrs. K.V. Shiji, Head of Applied Science

Xi
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Department and M.C. Jayan, Assistant Professor, Department of Mechanical Engineering, College
of Engineering, Adoor who helped me for the preparation of the appendix.

Though much care has been taken to present an error-free text, however, any further
comments and suggestions for improvement of the book would be appreciated.

Lasithan L.G.
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Introduction to Vibration

A motion which repeats itself after a certain interval of time may be called a vibration. It is the
motion of a particle or a body or a system of connected bodies displaced from a position of
equilibrium. Vibration occurs when a system is displaced from a position of stable equilibrium.
The system tends to return to this equilibrium position under the action of restoring forces.
A system is a combination of elements intended to act together to accomplish an objective.
It is of two types:

1. Static system
2. Dynamic system

A static system contains only static elements, i.e. there is no moving element, while a dynamic
system contains at least one dynamic element. Vibration is associated with dynamic systems.
A physical system undergoing a time-varying change or dissipation of energy among or within
its elementary storage or dissipative devices is said to be in a dynamic state. A dynamic system
composed of a finite number of storage elements is said to be a discrete system, while a system
containing elements, which are dense in physical space, is called continuous. The analytical
description of the dynamics of the discrete case is a set of ordinary differential equations, while
for the continuous case it is a set of partial differential equations. The analytical formulation
of a dynamic system depends on the kinematic or geometric constraints and the physical laws
governing the behaviour of the system.

The root causes of vibration are:

« External excitations

+ Unbalanced forces in the machine

* Dry friction between two mating surfaces
» Earthquakes

* Winds

The effect of vibration are excessive stresses, undesirable noise, looseness of part and partial
or complete failure of parts. In spite of these harmful effects, the vibration phenomenon does
some uses also, e.g. in musical instruments, vibrating screens, shakers, stress relieving, etc.

Elimination or reduction of the undesirable vibrations can be obtained by one or more of
the following methods:



2 Mechanical Vibrations and Industrial Noise Control

» Removing the causes of vibrations

« Putting the screens if noise is the objection
 Placing the machinery on proper type of isolators
» Shock absorbers

« Dynamic vibration absorbers

1.1 DEFINITIONS AND TERMINOLOGY

The following terms are used in the text.

Periodic Motion

A motion which repeats itself after an equal interval of time.

Time Period
Time taken to complete one cycle is the time period. Generally, time is measured in seconds.
It is denoted by T or #,.
Frequency
Frequency is the number of cycles per unit time. Generally, the unit time is taken as one second,
and, hence, frequency is the cycles per second (cps).
l cps = 1 Hz.
Cycle
Cycle is the motion completed during one time period.

Amplitude

Amplitude is the distance between the mean position and the extreme position of a vibrating
body. It is the maximum displacement of a vibrating body from the mean position, as shown
in Figure 1.1.

Extreme position

Amplitude

¥ Mean position

Amplitude

v r i

Extreme position

Figure 1.1 Amplitude.

Natural Frequency

When no external force acts on a body after giving it an initial displacement, then the body
is said to be under free or natural vibration. The frequency of free vibration is called natural
frequency. It is expressed in rad/s or hertz (Hz).
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Resonance

When the frequency of excitation is equal to the natural frequency of a system, a state of
resonance is said to have been reached. At resonance, the amplitude of vibration is excessively
large.

Degrees of Freedom

The number of independent coordinates required to describe the motion of a system is called
degrees of freedom (DF). A system is said to be n-degree-of-freedom system, if it needs »
independent coordinates to specify completely the configuration of the system at any instant.

The simple pendulum shown in Figure 1.2 represents a single-degree-of-freedom system.

v
mg

Figure 1.2 Simple pendulum.

The motion of the simple pendulum can be stated either in terms of the angle 6 or in
terms of the cartesian coordinates x and y. If the coordinates x and y are used to describe the
motion, it must be recognized that these coordinates are not independent. They are related to
each other through the relation x* + y* = P, where / is the constant length of the pendulum.
Thus any one coordinate can describe the motion of the pendulum. In this example we find that
the choice of angle 0 as the independent coordinate will be more convenient than the choice
of x or y. For the spring mass system shown in Figure 1.3, the linear coordinate x can be used
to specify the motion. For the torsional system shown in Figure 1.4, the angular coordinate 6
can be used to describe the motion.

x(1)

Figure 1.3 Spring mass system. Figure 1.4 Torsional system.
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Some examples of two and three degrees of freedom systems are shown in Figures 1.5 and 1.6.

1, h

I s B e (I NS

S 62
\_/' \/1
I, = mass moment of inertia of disc
k,; = stiffness of shaft and i =1, 2

Figure 1.5 Two degrees of freedom systems.

k! 1 k!Z kIJ

BARRANARNARANANANY

N

I, = mass moment of intertia of disc
x4(0) k,; = stiffness of shaftand i=1, 2, 3

Figure 1.6 Three degrees of freedom systems.

Figure 1.5 shows a two-mass, two spring system and a torsional system that is described
by the two linear coordinates x; and x, and angular coordinates 6, and 6.

Figure 1.6 shows a three-mass, three-spring system and a torsional system that is described
by the three linear coordinates x|, x, and x; and angular coordinates 6,, 6, and 6.

On the other hand, a spring supported rigid mass which can move in the direction of the
spring and can also have angular motion in one plane has two degrees of freedom (Figure 1.7).

m

I S

Figure 1.7 A spring-supported rigid mass with two degrees of freedom.



Introduction to Vibration 5

For the three degrees of freedom system shown in Figure 1.8, 6,(i = 1, 2, 3) specifies the
position of the masses m(i = 1, 2, 3).

|
i
|
I
|
|
1
|
1
|
|

(R

my

|
|
—_—p

| X 1
1 3 [

Figure 1.8 Tripple pendulum (a three degrees of freedom system).

Discrete and Continuous Systems

A large number of practical systems can be described using a finite number of degrees of
freedom, such as the simple systems shown in Figures 1.2—-1.8. Some systems, especially those
involving continuous elastic members, have an infinite number of degrees of freedom. As a
simple example, consider the cantilever beam shown in Figure 1.9.

X
7 %
7 v
70 e 00 0 0-00.00 064¢ |
__________ -
2 ~~~~~~ . ® ‘*\{\‘ Xy
Z e o _~-

Figure 1.9 A cantilever beam (an infinite number of degrees of freedom system).

Since the beam has an infinite number of mass points, we need an infinite number of
coordinates to specify its deflected configuration. The infinite number of coordinates define
its elastic deflection curve. Thus, the cantilever beam is a continuous system having infinite
number of degrees of freedom.

A flexible beam between two supports has an infinite number of degrees of freedom

(Figure 1.10). 2 E
N~

Figure 1.10 A flexible beam with infinite degrees of freedom.
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Most structural and machine systems have deformable (elastic) members and, therefore,
have an infinite number of degrees of freedom. Systems with a finite number of degrees of
freedom are called discrete or lumped parameter systems, and those with an infinite number
of degrees of freedom are called continuous or distributed systems. Details about continuous
systems will be given in Chapter 9.

1.2 CLASSIFICATION OF VIBRATIONS AND VIBRATING SYSTEMS

System vibrations can be classified into three categories:

1. Free vibration
2. Forced vibration
3. Self-excited vibration.

Free vibration of a system occurs in the absence of any force where damping may or
may not be present. In the absence of damping, the total mechanical energy due to the initial
conditions is conserved, and the system can vibrate forever because of the continuous exchange
between the kinetic and potential energy.

An external force that acts on the system causes the forced vibration. In this case, the
exciting force continuously supplies energy to the system to compensate the energy dissipated
by damping. Forced vibration may either be deterministic or random.

Self-excited vibration is periodic and deterministic. Under certain conditions, the equilibrium
state in such a vibration system becomes unstable, and any disturbances cause the perturbations
to grow until some effect limits any further growth. In the self-excited vibrations, the vibrations
create periodic force that excites the vibrations themselves. If the system is prevented from
vibrating, then the exciting force disappears. In contrast, in the case of forced vibrations, the
exciting force is independent of the vibrations and can persist even when the system is prevented
from vibrating. More details about self-excited vibrations will be given in Chapter 11.

1.2.1 Free and Forced Vibrations

If an external energy source is applied to initiate the vibrations and then removed, the resulting
vibrations are called the free vibrations. In the absence of non-conservative forces, free vibrations
sustain themselves and are periodic. The oscillations of a simple pendulum is an example of
free vibration. Free vibrations decay when a non-conservative force is present.

If the vibrations occur during the presence of an external energy source, the vibrations are
called the forced vibrations. The behaviour of a system under forced vibrations is dependent
on the type of excitation. If the excitation is periodic, then the vibrations of a linear system
are also periodic.

1.2.2 Linear and Nonlinear Vibrations

If the behaviour of all basic elements of a vibrating system namely the spring, the mass and the
damper is linear [see Figure 1.15], then the resulting vibration is known as the linear vibration.



