面向"十三五"高等教育规划教材

Combustion

汪健生 李君 刘雪玲 编

面向"十三五"高等教育规划教材

燃烧学

汪健生 李 君 刘雪玲 编

BEIJING INSTITUTE OF TECHNOLOGY PRESS

版权专有 侵权必究

图书在版编目(CIP)数据

燃烧学 / 汪健生,李君,刘雪玲编. —北京:北京理工大学出版社,2017.6 ISBN 978-7-5682-4285-1 Ⅰ.①燃… Ⅱ.①汪… ②李… ③刘… Ⅲ.①燃烧学 Ⅳ.①O643.2

中国版本图书馆 CIP 数据核字(2017)第 161079 号

出版发	行 / 北京理工大学出版社有限责任公司			
社	址 / 北京市海淀区中关村南大街 5 号			
曲阝	编 / 100081			
电	话 / (010) 68914775 (总编室)			
	(010) 82562903(教材售后服务热线)			
	(010) 68948351(其他图书服务热线)			
XX	业 / http://www.bitpress.com.cn			
经	销 / 全国各地新华书店			
印	刷 /			
开	本 / 787 毫米×1092 毫米 1/16			
印	张 / 13	责任编辑	/ 封	雪
字	数 / 307 千字	文案编辑	/ 封	雪
版	次 / 2017 年 6 月第 1 版 2017 年 6 月第 1 次印刷	责任校对	/ 孟祥	樟敬
定	价 / 48.00 元	责任印制	/ 王美	间

图书出现印装质量问题,请拨打售后服务热线,本社负责调换

PREFACE

燃烧学是工程热物理及其相关学科的一门重要专业基础课程,其相关理论也 被广泛应用于航空航天、动力工程、机械工程、化学工程等众多工程领域中。本 书较为全面系统地介绍了燃烧现象所涉及的基本概念、基本理论以及最新的研究 进展。内容选取上,参考了国内外优秀教材的精华,同时适当增加了燃烧学的新 近研究与应用成果。由于燃烧学涉及热力学、传热学、流体力学、化学动力学等 理论基础,数学处理相对复杂,为使读者能比较深入理解燃烧学的基本理论,掌 握其基本处理方法,本书在内容叙述中,力求避免过多讨论相对烦琐的数学推导 及演绎,而将重点集中于燃烧过程的物理机理的讲述与讨论。本书力求简明扼要, 目的是为不同专业方向的读者提供燃烧学的基本知识,使其能正确运用于理论研 究和工程实际。此外,本书还介绍了燃烧学的最新研究动态,以便读者能了解燃 烧学的相关研究进展。为加深对本书内容的理解与掌握,每章均备有少量习题。

全书共分9章,分别介绍了燃烧热力学、化学反应动力学、预混气体着火理 论、预混燃烧、扩散燃烧、固体燃料的燃烧、液体燃料的燃烧、燃烧污染物的生 成和控制、燃烧学研究前沿简介。其中第2、4、5章由汪健生负责编写,第7、 8、9章由李君负责编写,第1、3、6章由刘雪玲负责编写。本书在编写过程中, 得到了中低温热能高效利用教育部重点实验室(天津大学)的大力支持,也得到 了北京理工大学出版社的鼎力相助,对此编者表示诚挚的感谢。

本书可作为工程热物理及其相关专业的本科生或研究生教材,也可供从事燃烧研究与应用的工程技术人员参考。

由于编者水平有限,书中可能存在不足之处,恳请读者予以指正。

编 者 2016年9月

第1章	燃烧热力学·····	001
1.1 敖	A.力学基本概念	001
1.1.1	强度量和广延量	001
1.1.2	2 理想气体状态方程	001
1.1.3	3 状态的热方程——内能和焓	001
1.1.4	1 理想气体混合物	002
1.1.5	5 化学当量比	003
1.1.6	5 绝对焓和生成焓	004
1.2 煮	&力学第一定律及其在燃烧系统中的应用	005
1.2.1	燃烧焓和热值	005
1.2.2	2 绝热燃烧温度	007
1.3 敖	&力学第二定律及其在燃烧系统中的应用	010
1.3.1	1 热力学第二定律及平衡条件	010
1.3.2	2 化学平衡	011
习题…		013
参考文	.献	013
第2章	化学反应动力学······	015
2.1 总	总反应与基元反应	015
2.2	质量作用定律、反应级数和反应分子数	016
2.3 差	基元反应速率	017
2.3.1	分子反应与碰撞理论	017
2.3.2	2 基元反应类型	021
2.4 💈	3步反应机理的反应速率	022
2.5 済	争生成率	023

应速率常数与平衡常数	.6 反应	2.6
力学近似	.7 动力	2.7
准稳态近似	2.7.1	2
单分子反应机理029	2.7.2	2

2.7.3	链式反应和链式分支反应	030
2.7.4	化学特征时间尺度	031
2.7.5	局部平衡近似	033
习题		··034
参考文南	犬	035

第3章	预混气体着火理论	·036
3.1 热	着火机理	·036
3.1.1	闭口系统着火机理	·036
3.1.2	开口系统着火机理	·038
3.1.3	着火界限	·042
3.2 链	式反应着火机理	·043
3.2.1	链式反应着火临界条件	·043
3.2.2	链式反应着火界限	·044
3.3 热	力点火模型	·045
3.3.1	局部热力点火	·045
3.3.2	热射流 (火焰) 点火	·047
习题…		·048
参考文薩	献	·048

第4章	预混燃烧	
4.1 层	流预混燃烧	
4.2 层	流火焰模型	
4.2.1	基本假设	
4.2.2	控制方程	
4.2.3	求解过程	
4.3 层	流火焰特性及其影响因素	
4.3.1	火焰速度	
4.3.2	火焰层厚度	
4.3.3	压力对火焰传播速度的影响	
4.3.4	化学当量比对火焰传播速度的影响	
4.3.5	燃料类型对火焰传播速度的影响	
4.4 湍	流预混燃烧	
4.5 湍	流火焰速度	
4.6 湍	流预混火焰结构特征	
4.7 湍	流火焰模式	
4.7.1	湍流预混火焰模式判据	
4.7.2	丹姆克尔数	
4.7.3	皱褶层流火焰模式	

4.	7.4	分布反应模式	
4.	7.5	旋涡小火焰模式	
4.8	湍	流预混火焰的稳定性	
习题	į		
参考	文南	献	

第5章	扩散燃烧	
5.1 层	流扩散	
5.1.1	层流扩散火焰结构	
5.1.2	控制方程及求解	070
5.1.3	射流火焰特性	073
5.2 几	种常用火焰燃烧器火焰特性	075
5.3 碳	烟特性	078
5.4 湍	流扩散火焰	078
5.4.1	控制方程	079
5.4.2	湍流扩散火焰长度	
5.4.3	火焰的抬升与吹熄	
习题…		
参考文	献	

第6	章		国体燃料	的燃烧		 	 	 	085
6.	1 目	非均	相反应…			 	 	 	085
6.	2 硕	炭的	Ⅰ燃烧			 	 	 	086
	6.2.1	1	碳的燃烧	反应过程	呈	 	 	 	086
	6.2.2	2	单模模型			 	 	 	087
	6.2.3	3	双膜模型			 	 	 	093
	6.2.4	4	碳粒燃烧	时间		 	 	 	098
6.	3 发	某的	Ⅰ燃烧			 	 	 	099
	6.3.1	1	煤燃烧的	特点		 	 	 	099
	6.3.2	2	煤燃烧的	方式		 	 	 	100
习	题…					 	 	 	101
参	考文	て献				 	 	 	102

第7章	t ž	液体燃料的燃烧	103
7.1	概述	莁 ·····	103
7.2	单个	个液滴的蒸发	103
7.2	.1	基本假设	104
7.2	.2	气相部分	104
7.2	.3	液滴寿命	106

7.3	单	个液滴的燃烧	· 107
7.	3.1	假设	· 108
7.	3.2	问题的表述	· 109
7.	3.3	质量守恒	· 109
7.	3.4	组分守恒	· 109
7.	3.5	能量守恒	· 111
7.	3.6	总结和求解	· 114
7.	3.7	燃烧速率常数和液滴寿命	· 115
7.	3.8	扩展到对流条件	· 116
习题	į		· 117
参考	文南	۲	· 117

第8章	燃烧污染物的生成和控制	19
8.1 概道	述	19
8.2 排注	放的量化描述	21
8.2.1	排放因子	21
8.2.2	折算浓度	21
8.3 氮	氧化物的生成机理及控制措施1	23
8.3.1	氮氧化物的生成机理	25
8.3.2	影响煤粉炉内氮氧化物生成的因素	28
8.3.3	氮氧化物的生成控制措施	30
8.4 CO	D_2 的捕集、封存和利用简介	32
8.4.1	CO ₂ 的捕集和封存1	33
8.4.2	CO2的利用1	35
习题	······1	38
参考文南	武	38

第9章	燃烧学研究前沿简介	140
9.1 富	氧燃烧	140
9.1.1	富氧燃烧技术的理论基础	140
9.1.2	中国富氧燃烧技术发展历程	
9.2 化	学链燃烧	144
9.2.1	化学链燃烧的技术原理	144
9.2.2	化学链燃烧技术的研究现状	145
9.2.3	化学链燃烧技术的进一步应用	
9.3 微	小尺度燃烧	
9.3.1	微小尺度燃烧的应用	
9.3.2	微小尺度燃烧面临的挑战	
9.3.3	微小尺度燃烧的稳燃方法	

目 录 📰

参考文献			
附录…		159	
表 A.	1 一氧化碳 (CO), $M_{\star} = 28.010 \text{ kg} \cdot \text{kmol}^{-1}$, 298 K 时的生成焓=		
	$-110 541 \text{ kJ} \cdot \text{kmol}^{-1}$	159	
表 A.:	2 二氧化碳(CO ₂), <i>M</i> ₂ =44.011kg•kmol ⁻¹ ,298K时的生成焓=		
	$-393 546 \text{ kJ} \cdot \text{kmol}^{-1}$	160	
表 A.	3 氢 (H ₂), $M_r = 2.016 \text{ kg} \cdot \text{kmol}^{-1}$, 298 K 时的生成焓=0	162	
表 A.	4 氢原子 (H), $M_r = 1.008 \text{ kg} \cdot \text{kmol}^{-1}$, 298 K 时的生成焓=		
	217 977 kJ • kmol ⁻¹ ·····	164	
表 A.	5 氢氧基 (OH), $M_r = 17.00 \text{ kg} \cdot \text{kmol}^{-1}$, 298 K 时的生成焓=		
	38 985kJ • kmol ⁻¹	166	
表 A.	6 水 (H ₂ O), $M_r = 18.016 \text{ kg} \cdot \text{kmol}^{-1}$, 298 K 时的生成焓=		
	-241 845 kJ•kmol ⁻¹ ,蒸发焓=44 010 kJ•kmol ⁻¹	167	
表 A.	7 氮 (N ₂), $M_r = 28.013 \text{ kg} \cdot \text{kmol}^{-1}$, 298 K 时的生成焓=0	169	
表 A.	8 氮原子 (N), $M_r = 14.007 \text{ kg} \cdot \text{kmol}^{-1}$, 298 K 时的生成焓=		
	472 629 kJ • kmol ⁻¹ ·····	171	
表 A.	9 一氧化氮 (NO), $M_r = 30.006 \text{ kg} \cdot \text{kmol}^{-1}$, 298 K 时的生成焓=		
	90 297 kJ • kmol ⁻¹ ·····	172	
表 A.	10 二氧化氮 (NO ₂), $M_r = 46.006 \text{ kg} \cdot \text{kmol}^{-1}$, 298 K 时的生成焓=		
	33 098 kJ • kmol ⁻¹ ·····	174	
表 A.	11 氧气 (O ₂), $M_r = 31.999 \text{ kg} \cdot \text{kmol}^{-1}$, 298 K 时的生成焓=0	176	
表 A.	12 氧原子 (O), $M_r = 16.000 \text{ kg} \cdot \text{kmol}^{-1}$, 298 K 时的生成焓=		
	249 197 kJ • kmol ⁻¹ ·····	177	
表 A.	13 C-H-O-N系统的热力学性质拟合曲线系数	179	
表 B.	1 碳氢燃料某些性质:(298.15 K 和 1 atm)	180	
表 B.	2 燃料在 298.15 K, 1 atm, 元素的焓为零参考状态下比定压热容和		
	焓的曲线拟合系数		
表 B.	3 燃料蒸气的导热系数、黏性系数及比定压热容的曲线拟合系数	183	
表 C.	1 1 atm 下空气的常用性质		
表 C.	2 1 atm 下氮气和氧气的常用性质		
表 E.1	1 各物质的生成焓 h ⁶ _f , 101.3 kPa, 298.15 K	187	
表 E.2	2 空气中某些可燃物的最低着火温度值		
表 E.:	3 1 atm, 室温, 可燃性气体与空气混合气的着火界限值		
表 E.4	4 可燃性气体与空气混合的层流火焰传播速度最大值及相应的		
-t.	浓度值(1 atm, 室温)	190	
表 E.:	5 初温 25 ℃, 初压 1 atm トC-J 爆震特征值	191	
表 E.e	6 呆些可燃性气体的爆炸界限(与空气混合)	191	
表 E.'	/ 右十燃料仕空气甲的物理和燃烧性质	192	

第1章

燃烧热力学

1.1 热力学基本概念

1.1.1 强度量和广延量

根据参数的数值是否与物质的数量有关,参数可分为强度量和广延量。参数数值与物质 的数量无关的量称为强度量,如温度、压力、密度等。强度量有两类:第一类强度量明显地 不依赖物质的量,其大小可以表示整个体积的状态,如温度 T 和压力 p; 第二类是比广延量, 以单位质量(或者物质的量)的值来表示,一般用小写的符号表示,例如比体积v (m³/kg)、 比内能 u (J/kg)、比焓 h (J/kg)等。强度量不具有加和性,与强度相对应的是广延量。广延 量的数值与物质的数量(质量或物质的量)有关,例如物质的体积、内能、焓等。广延量常 用大写字母表示,例如体积 $V(\mathbf{m}^3)$ 、内能 $U(\mathbf{J})$ 、焓 $H(\mathbf{J})$ 等。

1.1.2 理想气体状态方程

状态方程给出了物质的压力、温度和体积之间的关系。理想气体即忽略了分子间的作用 力和分子体积的气体。理想气体状态方程可写成如下形式:

$$pV = nR_{\rm u}T \tag{1.1}$$

$$pV = mRT \tag{1.2}$$

$$pv = RT \tag{1.3}$$

或

$$p = \rho RT \tag{1.4}$$

式中: $R_{\rm u}$ 为通用气体常数,其值为 8 314.3 J/(kmol·K); R 为气体常数,与气体的种类有关, 其值可由通用气体常数和气体的摩尔质量 M 得到,即

$$R = R_{\rm p} / M \tag{1.5}$$

1.1.3 状态的热方程——内能和焓

物质的内能(或焓)与压力和温度的关系称为状态的热方程,即

$$u = u(T, v) \tag{1.6}$$

$$h = h(T, p) \tag{1.7}$$

001 •-----

(1.1)

对式(1.6)和式(1.7)全微分,可得到

$$du = \left(\frac{\partial u}{\partial T}\right)_{v} dT - \left(\frac{\partial u}{\partial v}\right)_{T} dv$$
(1.8)

$$dh = \left(\frac{\partial h}{\partial T}\right)_p dT - \left(\frac{\partial h}{\partial p}\right)_T dp$$
(1.9)

已知式(1.8)和式(1.9)中

$$c_{\nu} \equiv \left(\frac{\partial u}{\partial T}\right)_{\nu} \tag{1.10}$$

$$c_p \equiv \left(\frac{\partial h}{\partial T}\right)_p \tag{1.11}$$

理想气体的定容过程 $\left(\frac{\partial u}{\partial v}\right)_{T} = 0$,理想气体的定压过程 $\left(\frac{\partial h}{\partial p}\right)_{T} = 0$ 。因此,对式(1.8)和式(1.9) 积分可得到理想气体状态的热方程

$$u(T) - u_{\text{ref}} = \int_{T_{\text{ref}}}^{T} c_{\nu} dT \qquad (1.12)$$

$$h(T) - h_{\text{ref}} = \int_{T_{\text{ref}}}^{T} c_p dT$$
(1.13)

1.1.4 理想气体混合物

混合物常常有多种组分组成,通常用组分的摩尔分数和组分的质量分数表示。其组分的 摩尔分数和质量分数分别表示为

$$\chi_{i} = \frac{N_{i}}{N_{1} + N_{2} + \dots + N_{i} + \dots} = \frac{N_{i}}{\sum_{i=1}^{n} N_{i}}$$
(1.14)

$$Y_{i} = \frac{m_{i}}{m_{1} + m_{2} + \dots + m_{i} + \dots} = \frac{m_{i}}{\sum_{i=1}^{n} m_{i}}$$
(1.15)

所有组分的摩尔(质量)分数的总和是1,即

$$\sum \chi_i = 1 \tag{1.16a}$$

$$\sum Y_i = 1 \tag{1.16b}$$

摩尔分数和质量分数之间的换算关系为

(1.17a)

$$\chi_i = \frac{Y_i M_{\text{mix}}}{M_i} \tag{1.17b}$$

式中: M_{mix} , M_i 分别为混合物和组分i的摩尔质量。

分压力 *p*_i 指组分 *i* 和混合物具有相同的温度时,当组分 *i* 单独占有混合物体积时的压力。 对于理想气体,混合物的压力等于混合物中所有组分的分压之和,即

$$p = \sum p_i \tag{1.18}$$

组分 i 的分压可由组分的摩尔分数和混合物的压力表示:

$$p_i = \chi_i p \tag{1.19}$$

对于理想气体混合物,以单位质量(或物质的量)为基准的混合物的强度参数可以由各物质的强度参数的质量分数(或摩尔分数)加权计算得到。例如混合物比焓可以表示为

$$h_{\rm mix} = \sum Y_i h_i \tag{1.20a}$$

$$\overline{h}_{\text{mix}} = \sum \chi_i \overline{h}_i \tag{1.20b}$$

同样可以得到混合物的比内能。

1.1.5 化学当量比

在燃烧计算中,通常认为空气只由氧气(O_2)和氮气(N_2)组成,其中 O_2 的体积分数为 21%, N_2 的体积分数为 79%。燃烧过程中每消耗 1 mol O_2 就带入 3.76 mol N_2 ,但 N_2 在燃烧过程中不参加反应。以碳氢燃料 C_xH_y 在空气中燃烧为例,假设燃料完全燃烧,化学反应式可写成

$$C_xH_y + a(O_2 + 3.76N_2) \longrightarrow xCO_2 + (y/2)H_2O + 3.76aN_2$$
 (1.21)

当燃料与空气按化学反应方程式中的比例进行完全燃烧时,该反应称为化学当量反应。 在化学当量反应中,空气与燃料的质量比称为化学当量的空气燃料比(也称为化学当量的空 燃比),其数值等于1kg燃料完全燃烧时所需要的空气质量,即

$$(A / F)_{\rm st} = \left(\frac{m_{\rm air}}{m_{\rm fuel}}\right)_{\rm st} = \frac{4.76a}{1} \frac{M_{\rm r,a}}{M_{\rm r,f}}$$
 (1.22)

式中: M_{ra}, M_{rf}分别为空气和燃料的摩尔质量。

当量比 ϕ 为化学当量的空燃比与实际燃烧反应的空燃比的比值,其计算式为

$$\Phi = \frac{(A/F)_{\rm st}}{(A/F)} = \frac{(F/A)}{(F/A)_{\rm st}}$$
(1.23)

当量比 $\boldsymbol{\Phi}$ 是决定燃料系统性能最重要的参数之一。对于富燃料混合物, $\boldsymbol{\Phi} > 1$;对于贫燃料混合物, $\boldsymbol{\Phi} < 1$;对于化学当量下的混合物, $\boldsymbol{\Phi} = 1$ 。

当量比与过量空气系数 α 互为倒数,即

$$\alpha = \frac{m_{\text{air}}}{m_{\text{air,st}}} = \frac{(A/F)_{\text{st}}}{(A/F)} = \frac{1}{\Phi}$$
(1.24)

例 1.1 已知某工业锅炉的燃料为天然气(成分为 CH₄),烟气成分分析结果显示其湿烟 气中 O₂的摩尔分数为 5%,试确定该锅炉工作时的空燃比(*A/F*)、当量比**Φ**和过量空气系 数 α。

解: 假设天然气在锅炉中完全燃烧,且反应产物没有发生离解反应,其化学反应式为

$$CH_4 + a(O_2 + 3.76N_2) \longrightarrow CO_2 + 2H_2O + bO_2 + 3.76aN_2$$

由氧原子守恒得

$$2a = 2 + 2 + 2b$$

🗄 燃烧学

$$b = a - 2$$

根据O₂的摩尔分数

$$\chi_{O_2} = \frac{N_{O_2}}{N_{mix}} = \frac{b}{1+2+b+3.76a} = \frac{a-2}{1+4.76a} = 0.05$$
$$a = 2.69$$

燃料的空燃比为

$$(A/F) = \frac{N_{\rm a}}{N_{\rm f}} \frac{M_{\rm r,a}}{M_{\rm r,f}}$$

 $\frac{N_{\rm a}}{N_{\rm f}} = \frac{4.76a}{1}$

由

得

得

$$(A/F) = \frac{N_{\rm a}}{N_{\rm f}} \frac{M_{\rm r,a}}{M_{\rm r,f}} = \frac{4.76a}{1} \frac{M_{\rm r,a}}{M_{\rm r,f}} = 4.76 \times 2.69 \times \frac{28.85}{16.04} = 23.03$$

化学当量下 CH₄ 的反应式

$$CH_4 + 2(O_2 + 3.76N_2) \longrightarrow CO_2 + 2H_2O + 7.52N_2$$

化学当量的空燃比为

$$(A/F)_{\rm st} = \frac{4.76 \times 2 \times 28.85}{16.04} = 17.1$$

$$\Phi = \frac{(A/F)_{\rm st}}{(A/F)} = \frac{17.1}{23.03} = 0.74$$

过量空气系数 α 为

$$\alpha = \frac{1}{\Phi} = \frac{1}{0.74} = 1.35$$

在该题的计算中,烟气中考虑了水蒸气,在实际分析烟气成分时,为了避免水蒸气在分 析仪中发生凝结现象,通常将水蒸气去除,称为干烟气成分分析。

1.1.6 绝对焓和生成焓

绝对焓为生成焓与显焓之和。所谓生成焓,是指与化学键(或无化学键)相关的能量; 显焓与物质的温度有关。因此,物质 *i* 的摩尔焓为

$$\bar{h}_{i}(T) = \bar{h}_{f,i}^{0}(T_{\text{ref}}) + \Delta \bar{h}_{s,i}^{0}(T_{\text{ref}})$$
(1.25)

式中: $\bar{h}_i(T)$ 为温度 *T*下的绝对焓; $\bar{h}_{f,i}^0(T_{ref})$ 为参考温度 *T*_{ref}下的生成焓; $\Delta \bar{h}_{s,i}^0(T_{ref})$ 为从参考温 度 *T*_{ref} 到温度 *T*的显焓变化;式中上标符号"-"表示摩尔比焓。

参考状态指温度为 T_{ref} = 298.15 K,压力为 p_{ref} = 1 atm (101 325 Pa)。在参考状态下,自然 界单质的生成焓为零。化合物的生成焓等于由单质化合生成该化合物时的热效应的负数。各 种物质的标准生成焓可以从化学热力学或物理化学手册中查到。

例 1.2 已知某燃气由 CO, CO₂和 N₂组成,其中 CO 的摩尔分数为 10%, CO₂的摩尔分数为 20%,若混合气体的温度为 1 200 K,压力为 1 atm。试确定:(1)混合物质量比焓和摩

尔比焓;(2)三种组分各自的质量分数。

解: (1) 由 $\sum \chi_i = 1$ 得

$$\chi_{\rm N_2} = 1 - \chi_{\rm CO_2} - \chi_{\rm CO} = 1 - 0.10 - 0.20 = 0.70$$

混合物焓为

$$\overline{h}_{\text{mix}} = \sum \chi_i \overline{h}_i = \chi_{\text{CO}} \left\{ \overline{h}_{f,\text{CO}}^0 + \left[\overline{h}(T) - \overline{h}_{f,298}^0 \right]_{\text{CO}} \right\} + \chi_{\text{CO}_2} \left\{ \overline{h}_{f,\text{CO}_2}^0 + \left[\overline{h}(T) - \overline{h}_{f,298}^0 \right]_{\text{CO}_2} \right\} + \chi_{\text{N}_2} \left\{ \overline{h}_{f,\text{N}_2}^0 + \left[\overline{h}(T) - \overline{h}_{f,298}^0 \right]_{\text{N}_2} \right\}$$

通过查附录 C-H-O-N 气体的热力学性质表并代入,得到

$$\overline{h}_{\text{mix}} = 0.10 \times (-110\,541 + 28\,440) + 0.20 \times (-393\,546 + 44\,488) + 0.70 \times (0 + 28\,118)$$

= -58339.1 (kJ / kmol)

混合物的相对分子质量为

$$M_{\rm r,mix} = \sum \chi_i M_{\rm r,i}$$

= 0.10×28.01+0.20×44.01+0.70×28.013=31.212 (kJ / kmol)

混合物质量比焓为

$$h_{\text{mix}} = \frac{\overline{h}_{\text{mix}}}{M_{\text{rmix}}} = \frac{-58\,339.1}{31.212} = 1\,869.12\,(\text{kJ/kg})$$

(2) 各组分的质量分数分别为

$$\omega_{\rm CO} = 0.10 \times \frac{28.01}{31.212} = 0.089\ 7$$
$$\omega_{\rm CO_2} = 0.20 \times \frac{44.01}{31.212} = 0.282\ 0$$
$$\omega_{\rm N_2} = 0.70 \times \frac{28.013}{31.212} = 0.628\ 2$$

1.2 热力学第一定律及其在燃烧系统中的应用

1.2.1 燃烧焓和热值

如果参与燃烧的反应物和燃烧产物已知,燃烧过程所释放(或吸收)的热量可根据热力 学第一定律计算得到。例如,在参考状态(298.15 K,1 atm)下,满足化学当量比的燃料和 空气的混合物进入反应器,假设燃料在反应器内完全燃烧。为了保证燃烧产物与反应物的温 度相等,在反应器外侧采用冷却措施,对反应器进行冷却,刚好将反应产生的热量全部带走。 根据热力学第一定律,从反应器带走的热量为燃烧反应前后燃烧产物和反应物的焓差,即

$$Q_{\rm cv} = H_{\rm prod} - H_{\rm reac} \tag{1.26}$$

这部分热量定义为反应物的总反应焓,表示为

$$\Delta H_{\rm R} \equiv H_{\rm prod} - H_{\rm reac} \tag{1.27}$$

单位质量的燃料与化学当量比下空气的混合物的燃烧焓(或反应焓)定义为

$$\Delta h_{\rm R} \equiv q_{\rm ev} = h_{\rm prod} - h_{\rm reac} \tag{1.28}$$

假定 1 mol 的 CH₄ 与化学当量的空气混合物在标准参考状态(比如 1 atm, 25 ℃)进入 稳定流动的反应器,且完全燃烧,生成物(CO₂,H₂O,N₂)以标准参考状态离开该反应器。 其反应方程式为

 $CH_4+2(O_2+3.76N_2) \longrightarrow CO_2+2H_2O+7.52N_2$

当反应为等压过程时,其反应焓为

$$\Delta H_{\mathrm{R},298\mathrm{K}} = \overline{h}_{\mathrm{f},\mathrm{CO}_2}^0 + \overline{h}_{\mathrm{f},\mathrm{H}_2\mathrm{O}}^0 - \overline{h}_{\mathrm{f},\mathrm{CH}_4}^0$$

N₂和 O₂没有贡献。从附录 C-H-O-N 气体的热力学性质表可查得 CO₂, H₂O 和 CH₄ 的标准生成焓值,代入上式,可得

$$\Delta h_{\rm R,298K} = (-393\,546) + 2 \times (-241\,845) - (-74\,831)$$

 $= -802 405 (kJ / mol)_{(CH_4)}$

以每千克燃料为基础的反应焓为

$$\Delta h_{\rm R,fuel} = \frac{\Delta h_{\rm R}}{M_{\rm r,f}} = \frac{-802\ 405}{16.043} = -50\ 016\ (\rm kJ/kg)_{\rm (CH_4)}$$

以每千克反应燃料和空气的混合物为基础时,其反应焓为

$$\Delta h_{\rm R,mix} = \Delta h_{\rm R,fuel} \, \frac{m_{\rm f}}{m_{\rm mix}}$$

式中:

$$\frac{m_{\rm f}}{m_{\rm mix}} = \frac{m_{\rm f}}{m_{\rm a} + m_{\rm f}} = \frac{1}{(A / F) + 1}$$

已知甲烷的空燃比为17.11,于是有

$$\Delta h_{\rm R,mix} = \frac{-50\,016}{17.11 + 1} = -2\,761.8\,(\rm kJ/kg)$$

对于放热反应,反应热是负值,吸热反应的反应热为正值。反应热与燃烧产物的相态有关,例如,气态水的生成热为-241.56 kJ/mol,而液态水的生成热为-285.54 kJ/mol,两者差值为参考温度下水的汽化热。

燃料热值 (Δh_c)的定义为: 1 kg 燃料在标准状态下与化学当量的空气完全燃烧所放出的热量,在数值上与反应焓相等,但符号相反。对于有可凝结产物的燃料有两种热值:产物为凝聚相时为高热值 (HHV),产物为气态时为低热值 (LHV)。

例 1.3 已知正癸烷(C₁₀H₂₂)的相对分子质量为 142.284:(1)试确定每千克正癸烷和 每摩尔正癸烷在 298 K 的高热值和低热值。(2)如果正癸烷在 298 K 的蒸发潜热为 359 kJ/kg, 试确定液态正癸烷的高热值和低热值。

解:(1)正癸烷(C₁₀H₂₂)的总反应方程式为

 $C_{10}H_{22}(g)$ +15.5(O_2 +3.76 N_2) → 10 CO_2 +11 $H_2O(I或 g)$ +15.5×3.76 N_2

无论高热值还是低热值,都有

$$\Delta H_{\rm c} = -\Delta H_{\rm R} = H_{\rm reac} - H_{\rm prod}$$

由于计算的参考温度为 298 K,所有组分的显焓都为零,并且 O₂和 N₂在 298 K 时的生成焓也为零。

由

$$H_{\text{reac}} = \sum_{\text{reac}} N_i \overline{h}_i \qquad \qquad H_{\text{prod}} = \sum_{\text{prod}} N_i \overline{h}_i$$

得

$$\Delta H_{\rm c,H_2O(l)}(\rm HHV) = 1 \times \overline{h}_{\rm f,C_{10}H_{22}}^{0} - (10\overline{h}_{\rm f,CO_2}^{0} + 11\overline{h}_{\rm f,H_2O}^{0})$$

从附录水蒸气的热力学性质表可查得气态水的生成焓和蒸发潜热,可得液态水的生成 热为

$$\overline{h}_{f,H_2O(1)}^0 = \overline{h}_{f,H_2O(g)}^0 - h_{f,g} = -241\,847 - 44\,010 = -285\,857\,(kJ / mol)$$

利用此值以及附录热力学性质表和燃料特性给出的生成焓,可得

$$\Delta H_{c,H_2O(I)} = 1 \times (-249\ 659) - [10 \times (-393\ 546) + 11 \times (-285\ 857)]$$

= 6 830 096 (kJ)

及

$$\Delta \overline{h}_{c} = \frac{\Delta \Pi_{c,H_{2}O(1)}}{N_{C_{10}H_{22}}} = 6\,830\,096\,\text{kJ/1kmol} = 6\,830\,096\,\text{kJ/kmol}_{(C_{10}H_{22})}$$

$$\Delta h_{\rm c} = \frac{\Delta h_{\rm c}}{M_{WC_{10}H_{22}}} = \frac{6\,830\,096}{142.284} = 48\,003\,(\rm kJ/kg)_{(C_{10}H_{22})}$$

对于低热值,将 $\bar{h}^0_{\mathrm{f},\mathrm{H}_2\mathrm{O}(\mathrm{g})}$ 代替 $\bar{h}^0_{\mathrm{f},\mathrm{H}_2\mathrm{O}(\mathrm{l})}$ 即可,因此有

 $\Delta \overline{h}_{c} = 6345986 (kJ/kmol)_{(C_{10}H_{22})}$

$$\Delta h_{\rm c} = 44\ 601\ ({\rm kJ/kg})_{\rm (C_{10}H_{22})}$$

(2) 对于液态的正癸烷(C₁₀H₂₂)有

A T T

$$H_{\text{reac}} = 1 \times (\overline{h}_{f,C_{10}H_{22}(g)}^0 - \overline{h}_{f,g})$$

即

$$\Delta h_{c}(液态燃料) = \Delta h_{c}(气态燃料) - h_{f,g}(蒸发潜热)$$
所以
$$\Delta h_{c}(HHV) = 48\ 003 - 359 = 47\ 644\ (kJ/kg)_{(C_{10}H_{22})}$$

$$\Delta h_{c}(LHV) = 44\ 601 - 359 = 44\ 242\ (kJ/kg)_{(C_{10}H_{22})}$$

1.2.2 绝热燃烧温度

燃烧火焰温度是燃烧过程的一个重要参数。例如在锅炉热计算中,需要利用炉膛内火焰 温度计算各受热面的吸热量。对给定反应混合物及初始温度,若知道燃烧产物的组分,产物 的温度可根据热力学第一定律计算得出。当空燃比和燃料温度一定时,绝热过程燃烧所能达 到的温度称为绝热燃烧(火焰)温度(*T*_{ad})。对定容燃烧和定压燃烧两种情况,其绝热燃烧 温度分别称为定压绝热燃烧温度和定容绝热燃烧温度。

对于定压燃烧过程,第一定律可表示为

即

$$H_{\text{prod}}(T_2) = H_{\text{reac}}(T_1) \tag{1.29}$$

式中: T1, T2分别为反应物和生成物的温度, 其中

$$H_{\text{reac}} = \sum_{\text{reac}} N_i \overline{h_i} \qquad H_{\text{prod}} = \sum_{\text{prod}} N_i \overline{h_i}$$

h_i(*T*)为显焓和化学焓之和。当反应物的组分及温度一定时,可计算出*H_{reac}*及*H_{prod}*,然 后根据燃烧产物的组分,则可求出燃烧产物的温度*T*₂。一般产物的组分指的是化学平衡时的 组分,它与产物温度有关。所以求解能量方程是一个反复迭代的过程。

例 1.4 在参考状态下的甲烷和空气以化学计量比混合,然后进行绝热等压燃烧,假设完 全燃烧,即燃烧产物中只有 CO₂, H₂O 和 N₂。计算产物焓时,比定压热容取为常数。请确定 甲烷的绝热燃烧温度。

解: 甲烷的反应方程式为

$$\begin{aligned} \mathrm{CH}_{4} + 2(\mathrm{O}_{2} + 3.76\mathrm{N}_{2}) &\longrightarrow \mathrm{CO}_{2} + 2\mathrm{H}_{2}\mathrm{O} + 7.52\mathrm{N}_{2} \\ N_{\mathrm{CO}_{2}} = 1 \,, \quad N_{\mathrm{H}_{2}\mathrm{O}} = 2 \,, \quad N_{\mathrm{N}_{2}} = 7.52 \end{aligned}$$

假设 T_{ad} 为 2 100 K, 产物的焓可用 1 200 K (≈ 0.5 ($T_f + T_{ad}$))来估算,各组分的物性参数如表 1.1 所示。

	1	
组分	标准生成焓(298 K) $\overline{h}^{\Theta}_{\mathrm{f},\mathrm{s}}/(\mathrm{kJ} \cdot \mathrm{kmol}^{-1})$	比热容(1 200 K) $c_{p,i}/[kJ \cdot (kmol \cdot K)^{-1}]$
CH ₄	- 74 831	
CO ₂	- 393 546	56.21
H ₂ O	-241 845	43.87
N ₂	0	33.71
0 ₂	0	

表 1.1 物性参数

根据热力学第一定律有

$$H_{\text{reac}} = \sum_{\text{reac}} N_i h_i = H_{\text{prod}} = \sum_{\text{prod}} N_i h_i$$

$$H_{\text{reac}} = 1 \times (-74\,831) + 2 \times 0 + 7.52 \times 0 = -74\,831 \,\text{(kJ)}$$

$$H_{\text{prod}} = \sum_{\text{prod}} N_i [\overline{h}_{\text{f},i}^{\Theta} + \overline{c}_{p,i} (T_{\text{ad}} - 298)]$$

$$= 1 \times [-393\,546 + 56.21 (T_{\text{ad}} - 298)] + 2 \times [-241\,845 + 43.87 (T_{\text{ad}} - 298)] + 7.52 \times [0 + 33.71 \times (T_{\text{ad}} - 298)]$$

由 $H_{reac} = H_{prod}$,可得 T_{ad} =2318(K)。 以上结果与用组分平衡计算得到的值(T_{ad} =2226K)相比较发现:上述简化的方法使计