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Preface

The fifth volume of Current Topics in Membranes and Transport presents
chapters dealing with the interaction of solutes and membrane proteins, as
exemplified by galactoside transport (Boos), and its energetic aspects in
amino acid transport (Heinz). Three chapters treat electrolyte transport,
in bacteria (Harold and Altendorf), in renal and bladder cells (Brodsky
and Schilb), and in the intestine (Schultz and Curran). The final chapter,
by Tasaki and Carbone, reviews the experimental basis for the macro-
molecular hypothesis of nerve excitation.

We believe these reviews conform to our editorial policy of not shunning
controversy. We therefore hope they will contribute to our understanding
of the molecular basis of biological transport.

FELIX BRONNER
ARNOST KLEINZELLER
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I. INTRODUCTION

The internal ionie milieu of bacteria generally differs radically from that
of the medium. As a rule, K+ is by far the most abundant cytoplasmic
cation, even though Na* may predominate in the environment. Even when
this generalization must be qualified, as is the case for halophilic bacteria, it
remains true that a high internal concentration of K+ is required for growth.
Kt is probably an essential nutrient for all bacteria (some species accept
Rb* as a substitute for IXt), whereas a requirement for Na* is seen only
occasionally. This universal preference for Kt poses fundamental questions:
How do bacteria selectively extract Kt from an environment generally far
richer in Na*? And why must they do so?

The study of cation transport in bacteria is still emerging from the
descriptive phase. The literature leaves little doubt that ion translocation
is mediated by specific transport systems located in the eytoplasmic mem-
brane, and records numerous attempts to define these by kinetic criteria.
It also seems clear that ion transport in bacteria does not involve the
familiar Nat IK*t-dependent ATPase of mammalian membranes. Beyond
this, attempts to define the molecular nature of the transport catalysts
and their relationship to metabolic pathways rely as much upon conjec-
ture as upon established fact. This article draws freely upon concepts and
techniques originating outside the bacterial world, and especially upon
Peter Mitchell’s echemiosmotic hypothesis. Our purpose is not to provide
a comprehensive survey of the literature, but rather to construct a frame-
work on which to hang present and future experimental data. In choosing
this eourse we are well aware that the devil lurks in the details; but we
also share Bacon's convietion (IXuhn, 1970) that truth emerges more
readily from error than from confusion.

Il. THE ION BALANCE OF BACTERIAL CELLS

The principle of electroneutrality dictates that the electrical charges
of cellular cations must at all times be balanced by an equivalent amount
of anions. Any imbalance generates an electrical potential, hence a force
that tends to restore overall electrical neutrality. Ignoring, for the time
being, the ionic imbalance that underlies bioeclectrical potentials, we can
anticipate that any change in the amount of cellular ion will be accompa-
nied by ion shifts of opposite sign such that overall electroneutrality is
preserved. This section is concerned with the balance of the charge account
and with the physical state of the eytoplasmiec ions.
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A. Cations and Anions

From the K+ content of the cells and the internal water space, the
cytoplasmic K+ concentration is estimated to be near 0.2 N in Escherichia
coli, 0.4 N in Streptococcus faecalis, and a prodigious 5 N in certain halo-
philic bacteria (Table I). Which anions balance the positive charges?
Tempest (1969) has recently summarized his extensive studies on the
composition of bacteria growing in a chemostat. In Aerobacter aerogenes,
under conditions such that K+ limits the rate of growth, nucleic acid
phosphorus accounted for a large part of the cellular K+ and Mg?**. Cations
and nuecleic acids varied in parallel as a function of the growth rate, lead-
ing to the conclusion that much of the cellular K+ is associated with ribo-
somes. That IX* is required for protein synthesis is of course well known
(Seetion VI, A). In Bacillus subtilis, phosphate groups of nucleic and teichoic
acids are the chief anionic residues, replaced under some conditions by
the earboxyl groups of teichuronic acid (Tempest, 1969). In exponentially
growing S. faecalis, the total content of I+ or Rb* was nearly equivalent
to the total phosphorus of nucleic acids and phospholipids (Harold and
Baarda, 1967a). Clearly, much of the cellular K+ is eleetrically balanced
by the anionic groups of macromolecules.

The only comprehensive analysis of a bacterial ion balance known to
us is due to Damadian (1971a), from whose work Table II is drawn. The
data refer to cells harvested during the exponential phase of growth (I+

TABLE I

CatioN CONTENT OF SELECTED BACTERIA®

Streptococcus faecalis® Escherichia coli? Halobacterium®

Cation® Stationary Exponential Stationary Exponential Stationary Exponential

K+ 220 560 10 220 37004000 3700-4000
Nat* 250 5 180 80 500-700  1600-2100
H* 100 — — —- — —
(pH; (pH;
near 5) near 7)
Cl~ — — — - - 2300-2900 3200-4000

¢ Values given are concentrations in millimoles per liter of cell water.

b H* refers to titratable acidity (Harold and Papineau, 1972a).

¢ Data from Zarlengo and Schultz, 1966 and unpublished experiments in this labora-
tory.

4 Data from Schultz et al. (1962a).

¢ Data from Ginzburg et al. (1970), for an unidentified species.
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TABLE II

ELEcTrROSTATIC BALANCE OF IONS IN Escherichia colit:?

Exponential Alkali-
phase cells, treated cells,
K* form Na* form
(neq/gm (neq/gm
dry weight) dry weight)

Anionic residues

Phospholipid phosphate 144 144
Nucleic acid phosphate 624 624
Soluble phosphate esters 112 80
Inorganic phosphate 29 29
Protein carboxylate 522 522
Organic acid carboxylate 128 39
Amino acid carboxylate 52 23
Other anions 8 0

Total anionic residues 1619 1461

Cationie residues

K+ 550 17
Nat+ 0 160
NH,* 50 72
Mg+ 142 282
Other inorganic cations 70 19
Protein amine 752 752
Amino acid amine 55 19
Phospholipid amine 134 134

Total cationic residues 1753 1454

@ Data from Damadian (1971a), with kind permission.

»The K* cells were harvested during growth and
analyzed. To replace K+ by Na* the cells were subjected
to repeated treatment with alkali.

cells); part was subjected to alkali treatment so as to replace K+ by Nat
(Na* cells). The omission of polyamines from the analysis is regrettable,
but the data make it clear that a large fraction of the cellular K+ or Nat
must be paired with anionic groups of macromolecules, both phosphate
and carboxylate. Only about a quarter of the anionie groups comes from
diffusible metabolites. This leads Damadian (1971a) to regard bacterial cells
as a mixed-funetion cation-exchange resin, a coneept to whose implications
we shall return.

In growing cells the internal pH is not too far from neutrality, and H*
makes a minor contribution to ion stoichiometry. This is often not true
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for cells harvested during the stationary phase of growth from media
acidified by the products of metabolism. In such cells H may make up a
substantial part of the eation complement (Table I); the H* is expelled,
and replaced by K*, when the cells are allowed to metabolize.

B. Physical State of Cytoplasmic Cations

In an earlier era of cell physiology, it was quite widely held that the
capacity of cells to accumulate various nutrients could be accounted for
by the binding, or sorption, of small molecules to specific sites on the
macromolecular matrix of the cytoplasm. According to Ling (1965, 1969),
who has presented the most sophisticated treatment of this conception,
both pool size and selectivity are determined by specific association of
solutes with binding sites, and the membrane does not constitute a signifi-
cant permeability barrier to small molecules. Today, this view of cellular
structure has little currency among students of microbial physiology.
The accumulated evidence of two decades (see Rothstein, 1959; Epstein and
Schultz, 1967; Harold, 1972) leaves little doubt that cytoplasmic solutes
are in general osmotically active, and that their entry into the cell is con-
trolled by specific transport, systems which reside in the plasma membrane.
But the case of cations is a somewhat special one since, as noted in Section
II, A, they are to a large extent paired with macromolecular anions. It
is thus appropriate to reconsider the mobility of eytoplasmic cations,
their contribution to the osmotic pressure, and the specificity of their
association with anionic groups.

The osmotic pressure of bacteria was originally measured by Mit-
chell and Moyle (1956), both by plasmolysis and by allowing cell pastes to
equilibrate with suerose solutions of known vapor pressure. The conclusion
that the cytoplasm of Staphylococcus aureus is near 1 osmolal requires most
of the small solutes to be osmotically active; Kt, a major component, is
by implication among these. More direct evidence comes from the studies
of Epstein and Schultz (1967) on the relationship of I+ ¢ontent to osmotic
pressure in Fscherichia coli. We consider this matter in Section V, I; here
we note only that the K+ content of growing cells increased as a function
of medium osmolarity; on the assumption that the extra K+ is neutralized
by a diffusible anion, and that both are osmotically active, there was good
quantitative correspondence up to ca. 400 milliosmolal. Plasmolysis of
the cells induced by addition of glucose was reversed under conditions
that allowed the cells to accumulate K+ from the medium. These results,
too, could be accounted for on the assumption that the K+ taken up is
osmotically active.
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In a recent article, Marquis and Carstensen (1973) addressed themselves
directly to the state of eations in S. faecalis and Micrococcus lysodeikticus
by measuring both high-frequency electrical conductivity and osmotic
characteristics. The electrical conductivity measurements yielded values
of 0.90 and 0.68 mho per meter for S. faecalis and M. lysodeikticus, respec-
tively; these values are only about a third of the conductivity predicted
from the ion content of the two cell types, taking K+ to be the main current-
conducting ion. The discrepancy was resolved through studies on the
conduectivity of suspensions of cells whose membranes had been damaged
with butanol or by freezing and thawing; the conductivities of dilute
suspensions were in good agreement with expecetations, but those of con-
centrated suspensions were progressively less, extrapolating to conduc-
tivities near those found for intact cells. These investigators therefore
concluded that the relatively low conductivity of intact cells reflects the
behavior of electrolytes in a concentrated mixture of small ions and cell
polymers of various sizes. However, the ions were osmotieally active both
when the eell was intact and after disruption; indeed, the internal osmolal-
ity estimated from the plasmolysis threshold was somewhat higher than
that calculated from the solute content. Overall, then, it appears that
small eytoplasmic ions are free to move in an electrical field, albeit with
reduced mobility. Both the high viscosity and the proximity of charged
macromolecules may contribute to the restraints on cation mobility
(Marquis and Carstensen, 1973). But there is no need to invoke tight
binding or “sorption™ of the ions to cellular polymers.

Another nondestructive technique to shed light on the physical state of
cations is nuclear magnetic resonance (NMR). Studies with mammalian
tissues, which are not reviewed here (Ling and Cope, 1969; Cope, 1970;
Czeisler et al., 1970), led to the conclusion that a large fraction of Nat in
muscle, brain, and kidney is complexed, behaving like Na* associated with
macromolecules of an ion-exchange resin. By analogy, at least, the same
may be true for K+, but this cannot be verified directly for most bacteria
because of the weakness of the signal from K+. Only with Halobacterium,
which contains as much as 5 M K+, were Cope and Damadian (1970) able
to deteet #*ICH signals; they inferred from their results that much of the
K+ is either complexed by fixed charges, or else solvated in semicrystal-
line water. Indeed, there is considerable evidence that cytoplasmic water
has a structure more ordered than that of external water, and this also
depends on the ionic composition of the cells (Wiggins, 1971; Damadian
et al., 1971). It is thus quite possible that the solvent properties of cellular
water are not quite the same as those of ordinary water, which could have
important consequences for the state of cellular ions.

The question of physical state is posed most sharply by the halophiles



