OREILLY"

Designing
Data-Intensive
Applications

N&f

%K% iRt Martin Kleppmann

IZITRIEZERNE o

Designing Data-Intensive Applications

Martin Kleppmann &

OREILLY®

O'Reilly Media, Inc. 324X R B3 K 2) AR At HY AR

Beijing « Boston « Farnham « Sebastopol - Tokyo

MR FREAFHAEG

BB RS B (CIP) ¥ #7

WIHBIEFEERNA . X/ GO5T - Mg e
(Martin Kleppmann)Z#. — Bl 4. —R & : R K2
fiAt,2017.10

45 4 J& 3C : Designing Data - Intensive Applications

ISBN 978 -7 - 5641 — 7385—-2

I.Q#%~ 0.0 I.0O%MHFTAE-EXH
H-¥3xr V. QTP311.56

o [hi A B 4 CIP 04 4% 7 (2017) 58 197051 5
B.10-2017-343 5

© 2017 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2017. Authorized reprint of the original English edition, 2017 O’Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
3 LR #& & O'Reilly Media, Inc. # #& 2017,

3 WP AR d KA AR IR 2017, Sk R AP R G tht o Ae 4K B AT 2] ik iR A A0 4K B AL P A A
—— O'Reilly Media, Inc.## 7T,

WA AT o R AT @A T A B TR B R FAETH X EH .

Fagg &k RV le 2211)

M RURAT » AR PE K2 Rt

Moo fk. BERPURERE 25 B4 210096
O A g

™ ik : http//www.seupress.com
HLFHE 4 : press@seupress.com

: WM TR SR BRA A
: 787 ZEHK X 980 B K 16 FF 4~
488

: 754 TF

: 2017 4E 10 HEE 1R

: 2017 4F 10 A% 1 REF I

: ISBN 978 — 7 - 5641 — 7385 — 2
: 99.00 7T

AAdEFANEHD
SEFFERHE

AL I A5 A A R R (M)A i B S E AR . MRS (fF) . 025- 83791830

Preface

If you have worked in software engineering in recent years, especially in server-side
and backend systems, you have probably been bombarded with a plethora of buzz-
words relating to storage and processing of data. NoSQL! Big Data! Web-scale!
Sharding! Eventual consistency! ACID! CAP theorem! Cloud services! MapReduce!
Real-time!

In the last decade we have seen many interesting developments in databases, in dis-
tributed systems, and in the ways we build applications on top of them. There are
various driving forces for these developments:

Internet companies such as Google, Yahoo!, Amazon, Facebook, LinkedIn,
Microsoft, and Twitter are handling huge volumes of data and traffic, forcing
them to create new tools that enable them to efficiently handle such scale.

Businesses need to be agile, test hypotheses cheaply, and respond quickly to new
market insights by keeping development cycles short and data models flexible.

Free and open source software has become very successful and is now preferred
to commercial or bespoke in-house software in many environments.

CPU clock speeds are barely increasing, but multi-core processors are standard,
and networks are getting faster. This means parallelism is only going to increase.

Even if you work on a small team, you can now build systems that are distributed
across many machines and even multiple geographic regions, thanks to infra-
structure as a service (IaaS) such as Amazon Web Services.

Many services are now expected to be highly available; extended downtime due
to outages or maintenance is becoming increasingly unacceptable.

Data-intensive applications are pushing the boundaries of what is possible by making
use of these technological developments. We call an application data-intensive if data
is its primary challenge—the quantity of data, the complexity of data, or the speed at

Preface | xiii

which it is changing—as opposed to compute-intensive, where CPU cycles are the
bottleneck.

The tools and technologies that help data-intensive applications store and process
data have been rapidly adapting to these changes. New types of database systems
(“NoSQL”) have been getting lots of attention, but message queues, caches, search
indexes, frameworks for batch and stream processing, and related technologies are
very important too. Many applications use some combination of these.

The buzzwords that fill this space are a sign of enthusiasm for the new possibilities,
which is a great thing. However, as software engineers and architects, we also need to
have a technically accurate and precise understanding of the various technologies and
their trade-offs if we want to build good applications. For that understanding, we
have to dig deeper than buzzwords.

Fortunately, behind the rapid changes in technology, there are enduring principles
that remain true, no matter which version of a particular tool you are using. If you
understand those principles, you're in a position to see where each tool fits in, how to
make good use of it, and how to avoid its pitfalls. That’s where this book comes in.

The goal of this book is to help you navigate the diverse and fast-changing landscape
of technologies for processing and storing data. This book is not a tutorial for one
particular tool, nor is it a textbook full of dry theory. Instead, we will look at examples
of successful data systems: technologies that form the foundation of many popular
applications and that have to meet scalability, performance, and reliability require-
ments in production every day.

We will dig into the internals of those systems, tease apart their key algorithms, dis-
cuss their principles and the trade-offs they have to make. On this journey, we will try
to find useful ways of thinking about data systems—not just how they work, but also
why they work that way, and what questions we need to ask.

After reading this book, you will be in a great position to decide which kind of tech-
nology is appropriate for which purpose, and understand how tools can be combined
to form the foundation of a good application architecture. You won’t be ready to
build your own database storage engine from scratch, but fortunately that is rarely
necessary. You will, however, develop a good intuition for what your systems are
doing under the hood so that you can reason about their behavior, make good design
decisions, and track down any problems that may arise.

Who Should Read This Book?

If you develop applications that have some kind of server/backend for storing or pro-
cessing data, and your applications use the internet (e.g., web applications, mobile
apps, or internet-connected sensors), then this book is for you.

xiv | Preface

This book is for software engineers, software architects, and technical managers who
love to code. It is especially relevant if you need to make decisions about the architec-
ture of the systems you work on—for example, if you need to choose tools for solving
a given problem and figure out how best to apply them. But even if you have no
choice over your tools, this book will help you better understand their strengths and
weaknesses.

You should have some experience building web-based applications or network serv-
ices, and you should be familiar with relational databases and SQL. Any non-
relational databases and other data-related tools you know are a bonus, but not
required. A general understanding of common network protocols like TCP and
HTTP is helpful. Your choice of programming language or framework makes no dif-
ference for this book.

If any of the following are true for you, you’ll find this book valuable:

» You want to learn how to make data systems scalable, for example, to support
web or mobile apps with millions of users.

» You need to make applications highly available (minimizing downtime) and
operationally robust.

+ You are looking for ways of making systems easier to maintain in the long run,
even as they grow and as requirements and technologies change.

 You have a natural curiosity for the way things work and want to know what
goes on inside major websites and online services. This book breaks down the
internals of various databases and data processing systems, and it’s great fun to
explore the bright thinking that went into their design.

Sometimes, when discussing scalable data systems, people make comments along the
lines of, “You're not Google or Amazon. Stop worrying about scale and just use a
relational database.” There is truth in that statement: building for scale that you don’t
need is wasted effort and may lock you into an inflexible design. In effect, it is a form
of premature optimization. However, it’s also important to choose the right tool for
the job, and different technologies each have their own strengths and weaknesses. As
we shall see, relational databases are important but not the final word on dealing with
data.

Scope of This Book

This book does not attempt to give detailed instructions on how to install or use spe-
cific software packages or APIs, since there is already plenty of documentation for
those things. Instead we discuss the various principles and trade-offs that are funda-
mental to data systems, and we explore the different design decisions taken by differ-
ent products.

Preface | xv

In the ebook editions we have included links to the full text of online resources. All
links were verified at the time of publication, but unfortunately links tend to break
frequently due to the nature of the web. If you come across a broken link, or if you
are reading a print copy of this book, you can look up references using a search
engine. For academic papers, you can search for the title in Google Scholar to find
open-access PDF files. Alternatively, you can find all of the references at hitps://
github.com/ept/ddia-references, where we maintain up-to-date links.

We look primarily at the architecture of data systems and the ways they are integrated
into data-intensive applications. This book doesn’t have space to cover deployment,
operations, security, management, and other areas—those are complex and impor-
tant topics, and we wouldn’t do them justice by making them superficial side notes in
this book. They deserve books of their own.

Many of the technologies described in this book fall within the realm of the Big Data
buzzword. However, the term “Big Data” is so overused and underdefined that it is
not useful in a serious engineering discussion. This book uses less ambiguous terms,
such as single-node versus distributed systems, or online/interactive versus offline/
batch processing systems.

This book has a bias toward free and open source software (FOSS), because reading,
modifying, and executing source code is a great way to understand how something
works in detail. Open platforms also reduce the risk of vendor lock-in. However,
where appropriate, we also discuss proprietary software (closed-source software, soft-
ware as a service, or companies’ in-house software that is only described in literature
but not released publicly).

Outline of This Book

This book is arranged into three parts:

1. In Part I, we discuss the fundamental ideas that underpin the design of data-
intensive applications. We start in Chapter 1 by discussing what we’re actually
trying to achieve: reliability, scalability, and maintainability; how we need to
think about them; and how we can achieve them. In Chapter 2 we compare sev-
eral different data models and query languages, and see how they are appropriate
to different situations. In Chapter 3 we talk about storage engines: how databases
arrange data on disk so that we can find it again efficiently. Chapter 4 turns to
formats for data encoding (serialization) and evolution of schemas over time.

2. In Part II, we move from data stored on one machine to data that is distributed
across multiple machines. This is often necessary for scalability, but brings with
it a variety of unique challenges. We first discuss replication (Chapter 5), parti-
tioning/sharding (Chapter 6), and transactions (Chapter 7). We then go into

xvi | Preface

more detail on the problems with distributed systems (Chapter 8) and what it
means to achieve consistency and consensus in a distributed system (Chapter 9).

3. In Part III, we discuss systems that derive some datasets from other datasets.
Derived data often occurs in heterogeneous systems: when there is no one data-
base that can do everything well, applications need to integrate several different
databases, caches, indexes, and so on. In Chapter 10 we start with a batch pro-
cessing approach to derived data, and we build upon it with stream processing in
Chapter 11. Finally, in Chapter 12 we put everything together and discuss
approaches for building reliable, scalable, and maintainable applications in the
future.

References and Further Reading

Most of what we discuss in this book has already been said elsewhere in some form or
another—in conference presentations, research papers, blog posts, code, bug trackers,
mailing lists, and engineering folklore. This book summarizes the most important
ideas from many different sources, and it includes pointers to the original literature
throughout the text. The references at the end of each chapter are a great resource if

you want to explore an area in more depth, and most of them are freely available
online.

0'Reilly Safari

« Safari (formerly Safari Books Online) is a membership-based
3 Safari

training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

Preface | il

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/designing-data-intensive-apps.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

This book is an amalgamation and systematization of a large number of other peo-
ple’s ideas and knowledge, combining experience from both academic research and
industrial practice. In computing we tend to be attracted to things that are new and
shiny, but I think we have a huge amount to learn from things that have been done
before. This book has over 800 references to articles, blog posts, talks, documenta-
tion, and more, and they have been an invaluable learning resource for me. I am very
grateful to the authors of this material for sharing their knowledge.

I have also learned a lot from personal conversations, thanks to a large number of
people who have taken the time to discuss ideas or patiently explain things to me. In
particular, I would like to thank Joe Adler, Ross Anderson, Peter Bailis, Mdrton
Balassi, Alastair Beresford, Mark Callaghan, Mat Clayton, Patrick Collison, Sean
Cribbs, Shirshanka Das, Niklas Ekstrom, Stephan Ewen, Alan Fekete, Gyula Fora,
Camille Fournier, Andres Freund, John Garbutt, Seth Gilbert, Tom Haggett, Pat Hel-
land, Joe Hellerstein, Jakob Homan, Heidi Howard, John Hugg, Julian Hyde, Conrad
Irwin, Evan Jones, Flavio Junqueira, Jessica Kerr, Kyle Kingsbury, Jay Kreps, Carl
Lerche, Nicolas Liochon, Steve Loughran, Lee Mallabone, Nathan Marz, Caitie

xviii | Preface

McCaffrey, Josie McLellan, Christopher Meiklejohn, Ian Meyers, Neha Narkhede,
Neha Narula, Cathy O’Neil, Onora O’Neill, Ludovic Orban, Zoran Perkov, Julia
Powles, Chris Riccomini, Henry Robinson, David Rosenthal, Jennifer Rullmann,
Matthew Sackman, Martin Scholl, Amit Sela, Gwen Shapira, Greg Spurrier, Sam
Stokes, Ben Stopford, Tom Stuart, Diana Vasile, Rahul Vohra, Pete Warden, and
Brett Wooldridge.

Several more people have been invaluable to the writing of this book by reviewing
drafts and providing feedback. For these contributions I am particularly indebted to
Raul Agepati, Tyler Akidau, Mattias Andersson, Sasha Baranov, Veena Basavaraj,
David Beyer, Jim Brikman, Paul Carey, Raul Castro Fernandez, Joseph Chow, Derek
Elkins, Sam Elliott, Alexander Gallego, Mark Grover, Stu Halloway, Heidi Howard,
Nicola Kleppmann, Stefan Kruppa, Bjorn Madsen, Sander Mak, Stefan Podkowinski,
Phil Potter, Hamid Ramazani, Sam Stokes, and Ben Summers. Of course, I take all
responsibility for any remaining errors or unpalatable opinions in this book.

For helping this book become real, and for their patience with my slow writing and
unusual requests, I am grateful to my editors Marie Beaugureau, Mike Loukides, Ann
Spencer, and all the team at O'Reilly. For helping find the right words, I thank Rachel
Head. For giving me the time and freedom to write in spite of other work commit-
ments, I thank Alastair Beresford, Susan Goodhue, Neha Narkhede, and Kevin Scott.

Very special thanks are due to Shabbir Diwan and Edie Freedman, who illustrated
with great care the maps that accompany the chapters. It’s wonderful that they took
on the unconventional idea of creating maps, and made them so beautiful and com-
pelling.

Finally, my love goes to my family and friends, without whom I would not have been

able to get through this writing process that has taken almost four years. You're the
best.

Preface | xix

Table of Contents

PRRRACR, o s wcivo st sic nis aamainin s oo i swn o ws wais amn oo v n v gy pajs DebwUibe HABIT & xiii
Partl. Foundations of Data Systems
1. Reliable, Scalable, and Maintainable Applications.ooiiiiiinn, 3
Thinking About Data Systems 4
Reliability 6
Hardware Faults 7
Software Errors 8
Human Errors 9
How Important Is Reliability? 10
Scalability 10
Describing Load 11
Describing Performance 13
Approaches for Coping with Load 17
Maintainability 18
Operability: Making Life Easy for Operations 19
Simplicity: Managing Complexity 20
Evolvability: Making Change Easy 21
Summary 22
2. Data Models and Query Languages.coevveiienniiieiriaiaieeeannnes 27
Relational Model Versus Document Model 28
The Birth of NoSQL 29
The Object-Relational Mismatch 29
Many-to-One and Many-to-Many Relationships 33
Are Document Databases Repeating History? 36

vii

Relational Versus Document Databases Today
Query Languages for Data

Declarative Queries on the Web

MapReduce Querying
Graph-Like Data Models

Property Graphs

The Cypher Query Language

Graph Queries in SQL

Triple-Stores and SPARQL

The Foundation: Datalog
Summary
. Storage and Retrieval...... CPATRe Sob viea Slask § A ¥ & e R i P S g e
Data Structures That Power Your Database
Hash Indexes
SSTables and LSM-Trees
B-Trees

Comparing B-Trees and LSM-Trees

Other Indexing Structures
Transaction Processing or Analytics?

Data Warehousing

Stars and Snowflakes: Schemas for Analytics
Column-Oriented Storage

Column Compression

Sort Order in Column Storage

Writing to Column-Oriented Storage

Aggregation: Data Cubes and Materialized Views
Summary

Encoding and Evolution. T A i siasoloslsps oot plasaid
Formats for Encoding Data
Language-Specific Formats
JSON, XML, and Binary Variants
Thrift and Protocol Buffers
Avro
The Merits of Schemas
Modes of Dataflow
Dataflow Through Databases
Dataflow Through Services: REST and RPC
Message-Passing Dataflow
Summary

38
42
b
46
49
50
52
53
55
60
63

69
70
72
76
79
83
85
90
91
93
95
97
99
101
101
103

m
112
113
114
117
122
127
128
129
131
136
139

viii

| Table of Contents

Partll. Distributed Data

e TRERMICRENRIIN. 7 i 50 sinie 5500 5i8 90800 008 LS H0TY 0 018008 850 3 5w SAR R a kB D a5 Sixsa i s 151

Leaders and Followers
Synchronous Versus Asynchronous Replication
Setting Up New Followers
Handling Node Outages
Implementation of Replication Logs
Problems with Replication Lag
Reading Your Own Writes
Monotonic Reads
Consistent Prefix Reads
Solutions for Replication Lag
Multi-Leader Replication
Use Cases for Multi-Leader Replication
Handling Write Conflicts
Multi-Leader Replication Topologies
Leaderless Replication
Writing to the Database When a Node Is Down
Limitations of Quorum Consistency
Sloppy Quorums and Hinted Handoff
Detecting Concurrent Writes
Summary

Partitioning.covviiiiiiiiiieiinnn a aiaia B i 7

Partitioning and Replication
Partitioning of Key-Value Data
Partitioning by Key Range
Partitioning by Hash of Key
Skewed Workloads and Relieving Hot Spots
Partitioning and Secondary Indexes
Partitioning Secondary Indexes by Document
Partitioning Secondary Indexes by Term
Rebalancing Partitions
Strategies for Rebalancing
Operations: Automatic or Manual Rebalancing

Request Routing
Parallel Query Execution
Summary
TEONSACHIONS. v o o 10 0w s wesnrrmesnatosscitnssss e s e dn ni 5 s Ay smisazsra

The Slippery Concept of a Transaction

152
153
K3
156
158
161
162
164
165
167
168
168
171
175
177
177
181
183
184
192

» 199

200
201
202
203
205
206
206
208
209
210
213
214
216
216

221
222

Table of Contents | ix

The Meaning of ACID 223

Single-Object and Multi-Object Operations 228
Weak Isolation Levels 233
Read Committed 234
Snapshot Isolation and Repeatable Read 237
Preventing Lost Updates 242
Write Skew and Phantoms 246
Serializability 251
Actual Serial Execution 252
Two-Phase Locking (2PL) 257
Serializable Snapshot Isolation (SSI) 261
Summary 266
8. The Trouble with Distributed Systems........................ Feriferfrny’ eeee 273
Faults and Partial Failures 274
Cloud Computing and Supercomputing 275
Unreliable Networks 277
Network Faults in Practice 279
Detecting Faults 280
Timeouts and Unbounded Delays 281
Synchronous Versus Asynchronous Networks 284
Unreliable Clocks 287
Monotonic Versus Time-of-Day Clocks 288
Clock Synchronization and Accuracy 289
Relying on Synchronized Clocks 291
Process Pauses 295
Knowledge, Truth, and Lies 300
The Truth Is Defined by the Majority 300
Byzantine Faults 304
System Model and Reality 306
Summary 310
9. Consistency and Consensus.......... s sairyes s Roaeprehi v - eyt ceenes 321
Consistency Guarantees 322
Linearizability 324
What Makes a System Linearizable? 325
Relying on Linearizability 330
Implementing Linearizable Systems 332
The Cost of Linearizability 335
Ordering Guarantees 339
Ordering and Causality 339
Sequence Number Ordering 343

x | Tableof Contents

Total Order Broadcast 348
Distributed Transactions and Consensus 352
Atomic Commit and Two-Phase Commit (2PC) 354
Distributed Transactions in Practice 360
Fault-Tolerant Consensus 364
Membership and Coordination Services 370
Summary 373
Partlll. Derived Data
10. BatchProcessing...........ceovvveeeinnans a1 4 AR it Eatus e sl 389
Batch Processing with Unix Tools 391
Simple Log Analysis 391
The Unix Philosophy 394
MapReduce and Distributed Filesystems 397
MapReduce Job Execution 399
Reduce-Side Joins and Grouping 403
Map-Side Joins 408
The Output of Batch Workflows 411
Comparing Hadoop to Distributed Databases 414
Beyond MapReduce 419
Materialization of Intermediate State 419
Graphs and Iterative Processing 424
High-Level APIs and Languages 426
Summary 429
11 SEreamPIOCeSSING. oo 0o vvs sive svasmrsnnrasonsarisssossns nsoseinsoniases vana 39
Transmitting Event Streams 440
Messaging Systems 441
Partitioned Logs 446
Databases and Streams 451
Keeping Systems in Sync 452
Change Data Capture 454
Event Sourcing 457
State, Streams, and Immutability 459
Processing Streams 464
Uses of Stream Processing 465
Reasoning About Time 468
Stream Joins 472
Fault Tolerance 476
Summary 479

Table of Contents

| xi

12. The Future of Data Systems.ocevvviiiiniiiiiiieiiiinieiiaianinnes 489

Data Integration 490
Combining Specialized Tools by Deriving Data 490

Batch and Stream Processing 494
Unbundling Databases 499
Composing Data Storage Technologies 499
Designing Applications Around Dataflow 504
Observing Derived State 509
Aiming for Correctness 515
The End-to-End Argument for Databases 516
Enforcing Constraints 521
Timeliness and Integrity 524

Trust, but Verify 528
Doing the Right Thing 533
Predictive Analytics 533
Privacy and Tracking 536
Summary 543
S R s s wasns v s we n s arsneviominsenes vos oo UL ORI, . 553
IR, Jovices et d et ot NV SRR RIS L e bR el B i gt d o 559

xii | Tableof Contents

PART |
Foundations of Data Systems

The first four chapters go through the fundamental ideas that apply to all data sys-

tems, whether running on a single machine or distributed across a cluster of
machines:

1. Chapter 1 introduces the terminology and approach that we’re going to use
throughout this book. It examines what we actually mean by words like reliabil-
ity, scalability, and maintainability, and how we can try to achieve these goals.

2. Chapter 2 compares several different data models and query languages—the
most visible distinguishing factor between databases from a developer’s point of
view. We will see how different models are appropriate to different situations.

3. Chapter 3 turns to the internals of storage engines and looks at how databases lay
out data on disk. Different storage engines are optimized for different workloads,
and choosing the right one can have a huge effect on performance.

4. Chapter 4 compares various formats for data encoding (serialization) and espe-
cially examines how they fare in an environment where application requirements
change and schemas need to adapt over time.

Later, Part IT will turn to the particular issues of distributed data systems.

