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Preface

If you have worked in software engineering in recent years, especially in server-side
and backend systems, you have probably been bombarded with a plethora of buzz-
words relating to storage and processing of data. NoSQL! Big Data! Web-scale!
Sharding! Eventual consistency! ACID! CAP theorem! Cloud services! MapReduce!
Real-time!

In the last decade we have seen many interesting developments in databases, in dis-
tributed systems, and in the ways we build applications on top of them. There are
various driving forces for these developments:

Internet companies such as Google, Yahoo!, Amazon, Facebook, LinkedIn,
Microsoft, and Twitter are handling huge volumes of data and traffic, forcing
them to create new tools that enable them to efficiently handle such scale.

Businesses need to be agile, test hypotheses cheaply, and respond quickly to new
market insights by keeping development cycles short and data models flexible.

Free and open source software has become very successful and is now preferred
to commercial or bespoke in-house software in many environments.

CPU clock speeds are barely increasing, but multi-core processors are standard,
and networks are getting faster. This means parallelism is only going to increase.

Even if you work on a small team, you can now build systems that are distributed
across many machines and even multiple geographic regions, thanks to infra-
structure as a service (IaaS) such as Amazon Web Services.

Many services are now expected to be highly available; extended downtime due
to outages or maintenance is becoming increasingly unacceptable.

Data-intensive applications are pushing the boundaries of what is possible by making
use of these technological developments. We call an application data-intensive if data
is its primary challenge—the quantity of data, the complexity of data, or the speed at
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which it is changing—as opposed to compute-intensive, where CPU cycles are the
bottleneck.

The tools and technologies that help data-intensive applications store and process
data have been rapidly adapting to these changes. New types of database systems
(“NoSQL”) have been getting lots of attention, but message queues, caches, search
indexes, frameworks for batch and stream processing, and related technologies are
very important too. Many applications use some combination of these.

The buzzwords that fill this space are a sign of enthusiasm for the new possibilities,
which is a great thing. However, as software engineers and architects, we also need to
have a technically accurate and precise understanding of the various technologies and
their trade-offs if we want to build good applications. For that understanding, we
have to dig deeper than buzzwords.

Fortunately, behind the rapid changes in technology, there are enduring principles
that remain true, no matter which version of a particular tool you are using. If you
understand those principles, you're in a position to see where each tool fits in, how to
make good use of it, and how to avoid its pitfalls. That’s where this book comes in.

The goal of this book is to help you navigate the diverse and fast-changing landscape
of technologies for processing and storing data. This book is not a tutorial for one
particular tool, nor is it a textbook full of dry theory. Instead, we will look at examples
of successful data systems: technologies that form the foundation of many popular
applications and that have to meet scalability, performance, and reliability require-
ments in production every day.

We will dig into the internals of those systems, tease apart their key algorithms, dis-
cuss their principles and the trade-offs they have to make. On this journey, we will try
to find useful ways of thinking about data systems—not just how they work, but also
why they work that way, and what questions we need to ask.

After reading this book, you will be in a great position to decide which kind of tech-
nology is appropriate for which purpose, and understand how tools can be combined
to form the foundation of a good application architecture. You won’t be ready to
build your own database storage engine from scratch, but fortunately that is rarely
necessary. You will, however, develop a good intuition for what your systems are
doing under the hood so that you can reason about their behavior, make good design
decisions, and track down any problems that may arise.

Who Should Read This Book?

If you develop applications that have some kind of server/backend for storing or pro-
cessing data, and your applications use the internet (e.g., web applications, mobile
apps, or internet-connected sensors), then this book is for you.
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This book is for software engineers, software architects, and technical managers who
love to code. It is especially relevant if you need to make decisions about the architec-
ture of the systems you work on—for example, if you need to choose tools for solving
a given problem and figure out how best to apply them. But even if you have no
choice over your tools, this book will help you better understand their strengths and
weaknesses.

You should have some experience building web-based applications or network serv-
ices, and you should be familiar with relational databases and SQL. Any non-
relational databases and other data-related tools you know are a bonus, but not
required. A general understanding of common network protocols like TCP and
HTTP is helpful. Your choice of programming language or framework makes no dif-
ference for this book.

If any of the following are true for you, you’ll find this book valuable:

» You want to learn how to make data systems scalable, for example, to support
web or mobile apps with millions of users.

» You need to make applications highly available (minimizing downtime) and
operationally robust.

+ You are looking for ways of making systems easier to maintain in the long run,
even as they grow and as requirements and technologies change.

 You have a natural curiosity for the way things work and want to know what
goes on inside major websites and online services. This book breaks down the
internals of various databases and data processing systems, and it’s great fun to
explore the bright thinking that went into their design.

Sometimes, when discussing scalable data systems, people make comments along the
lines of, “You're not Google or Amazon. Stop worrying about scale and just use a
relational database.” There is truth in that statement: building for scale that you don’t
need is wasted effort and may lock you into an inflexible design. In effect, it is a form
of premature optimization. However, it’s also important to choose the right tool for
the job, and different technologies each have their own strengths and weaknesses. As
we shall see, relational databases are important but not the final word on dealing with
data.

Scope of This Book

This book does not attempt to give detailed instructions on how to install or use spe-
cific software packages or APIs, since there is already plenty of documentation for
those things. Instead we discuss the various principles and trade-offs that are funda-
mental to data systems, and we explore the different design decisions taken by differ-
ent products.
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In the ebook editions we have included links to the full text of online resources. All
links were verified at the time of publication, but unfortunately links tend to break
frequently due to the nature of the web. If you come across a broken link, or if you
are reading a print copy of this book, you can look up references using a search
engine. For academic papers, you can search for the title in Google Scholar to find
open-access PDF files. Alternatively, you can find all of the references at hitps://
github.com/ept/ddia-references, where we maintain up-to-date links.

We look primarily at the architecture of data systems and the ways they are integrated
into data-intensive applications. This book doesn’t have space to cover deployment,
operations, security, management, and other areas—those are complex and impor-
tant topics, and we wouldn’t do them justice by making them superficial side notes in
this book. They deserve books of their own.

Many of the technologies described in this book fall within the realm of the Big Data
buzzword. However, the term “Big Data” is so overused and underdefined that it is
not useful in a serious engineering discussion. This book uses less ambiguous terms,
such as single-node versus distributed systems, or online/interactive versus offline/
batch processing systems.

This book has a bias toward free and open source software (FOSS), because reading,
modifying, and executing source code is a great way to understand how something
works in detail. Open platforms also reduce the risk of vendor lock-in. However,
where appropriate, we also discuss proprietary software (closed-source software, soft-
ware as a service, or companies’ in-house software that is only described in literature
but not released publicly).

Outline of This Book

This book is arranged into three parts:

1. In Part I, we discuss the fundamental ideas that underpin the design of data-
intensive applications. We start in Chapter 1 by discussing what we’re actually
trying to achieve: reliability, scalability, and maintainability; how we need to
think about them; and how we can achieve them. In Chapter 2 we compare sev-
eral different data models and query languages, and see how they are appropriate
to different situations. In Chapter 3 we talk about storage engines: how databases
arrange data on disk so that we can find it again efficiently. Chapter 4 turns to
formats for data encoding (serialization) and evolution of schemas over time.

2. In Part II, we move from data stored on one machine to data that is distributed
across multiple machines. This is often necessary for scalability, but brings with
it a variety of unique challenges. We first discuss replication (Chapter 5), parti-
tioning/sharding (Chapter 6), and transactions (Chapter 7). We then go into
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more detail on the problems with distributed systems (Chapter 8) and what it
means to achieve consistency and consensus in a distributed system (Chapter 9).

3. In Part III, we discuss systems that derive some datasets from other datasets.
Derived data often occurs in heterogeneous systems: when there is no one data-
base that can do everything well, applications need to integrate several different
databases, caches, indexes, and so on. In Chapter 10 we start with a batch pro-
cessing approach to derived data, and we build upon it with stream processing in
Chapter 11. Finally, in Chapter 12 we put everything together and discuss
approaches for building reliable, scalable, and maintainable applications in the
future.

References and Further Reading

Most of what we discuss in this book has already been said elsewhere in some form or
another—in conference presentations, research papers, blog posts, code, bug trackers,
mailing lists, and engineering folklore. This book summarizes the most important
ideas from many different sources, and it includes pointers to the original literature
throughout the text. The references at the end of each chapter are a great resource if

you want to explore an area in more depth, and most of them are freely available
online.

0'Reilly Safari

« Safari (formerly Safari Books Online) is a membership-based
3 Safari

training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

Preface | il



How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/designing-data-intensive-apps.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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PART |
Foundations of Data Systems

The first four chapters go through the fundamental ideas that apply to all data sys-

tems, whether running on a single machine or distributed across a cluster of
machines:

1. Chapter 1 introduces the terminology and approach that we’re going to use
throughout this book. It examines what we actually mean by words like reliabil-
ity, scalability, and maintainability, and how we can try to achieve these goals.

2. Chapter 2 compares several different data models and query languages—the
most visible distinguishing factor between databases from a developer’s point of
view. We will see how different models are appropriate to different situations.

3. Chapter 3 turns to the internals of storage engines and looks at how databases lay
out data on disk. Different storage engines are optimized for different workloads,
and choosing the right one can have a huge effect on performance.

4. Chapter 4 compares various formats for data encoding (serialization) and espe-
cially examines how they fare in an environment where application requirements
change and schemas need to adapt over time.

Later, Part IT will turn to the particular issues of distributed data systems.



