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Preface

The laser emission in various rare earth (Nd, Pr, Er, Ho, Tm, Yb)-
doped glasses have been studied since the 1960’s. However, the poten-
tial for rare earth-doped fiber amplifiers and fiber lasers were not
recognized until the late 1980’s and it began with a demonstration
of very low threshold fiber amplifier. This pioneering demonstra-
tion conveyed an important message: that using well established low
loss fiber fabrication technology and semiconductor laser fabrication
technology a new class of rare doped lasers and amplifiers could be
produced for new applications. This message was particularly well
received immediately by optical communication technologists and
they went on to develop Er-doped fiber amplifiers for various fiber
communication applications.

It was also recognized that an amplifier chain could be used for
long (~1000-7000 km) undersea optical communication links and
that such a system could be easily upgraded to higher data rates
simply by replacing the transmitters and repeaters on the shore —
a much easier task than laying a new cable. The first undersea
fiber optic link using an amplifier chain went into operation in the
mid-1990s.

The market demand for higher capacity transmission was helped
by the fact that computers continued to become more powerful and
needed to be interconnected. This is one of the key reasons why the
explosive growth of optical fiber technology parallels that of com-
puter processing and other key information technologies. The need
for higher capacity is continuing to encourage research in wavelength
division multiplexed (WDM) based transmission, which needs high
power fiber amplifier and tunable lasers. An important research area
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would continue to be the development of Er, Er-Yb co-doped fiber
amplifiers and Raman amplifiers for this application.

Optical networking and space communications (satellite to satel-
lite) represents the next advancement in optical communications
technology. Optical fiber amplifier is a key device for all-optical net-
works. The advances in research and many technological innovations
have led to superior designs of fiber amplifiers. Today most optical
communication systems use optical fiber amplifiers for signal ampli-
fication. High power short wavelength amplifiers using Nd or Yb
are important for space communication application due to low beam
divergence.

Fiber-based Raman lasers and amplifiers represent an important
area for lasers and amplifiers for wavelength regions where a rare
earth dopant may not be efficient. Using the cascaded Raman pro-
cess and multiple Stokes shifts, very efficient fiber Raman lasers and
amplifiers have been demonstrated.

High power fiber lasers producing kWs of power using double
clad fiber geometries is expected to become increasingly important
in future industrial applications. The development of short pulse fiber
laser is expected to become important in many applications such as
tomography and sensors.

The book is aimed at researchers already engaged in or wishing
to enter the field of rare earth-doped lasers and amplifiers. It is also
useful for graduate students, scientists and engineers interested in
fiber optics communication. An attempt has been made to make the
book self-contained and each chapter has a set of references which
can be consulted for further study.

N. K. Dutta
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Chapter 1

Introduction

1.1. Historical Developments

Laser is an acronym for Light Amplification by Stimulated Emission
of Radiation. The laser operating in the microwave region (maser)
was invented in 1955.! Extension of this to the visible wavelength
range was proposed in 1958.2 As opposed to other sources of light the
laser emission is highly directional, nearly monochromatic, has high
brightness, and a high degree of coherence. Laser emission requires an
optical gain medium in an optical cavity; the latter provides optical
feedback.? ® The first laser operation in doped solid state material —
chromium-doped Aly03 (Cr:Al;O3) was demonstrated by Maiman in
1960.3 The laser material was mostly AlyO3-doped with ~0.1 wt.%
of CryO3. The material was pumped with a high intensity pulsed
flashlamp and emitted at 693.4 nm.

Since then laser emissions in various rare earth (Nd, Pr, Er, Ho,
Tm, Yb)-doped glasses have been observed in the 1960’s.5 2 Although
typical doping levels for obtaining gain is low (~0.1 to 0.3 wt.% or 100
to 500 ppm), higher doping levels have been used, which are feasible,
for high power laser operation. The doped fiber laser was demon-
strated in 1964 by Koester and Snitzer.® They reported a flashlamp
pumped Nd-doped fiber amplifier with a high gain. The diode laser
pumped Nd-doped fiber laser was reported in 1970 by Stone and
Burrus.!® However, the potential for rare earth-doped fiber ampli-
fiers and fiber lasers was not recognized until the late 1980°s and it
began with a demonstration of very low threshold fiber amplifier by
Payne and his co-workers in 1985.11°13
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They reported a Nd-doped fiber laser emitting at 1088 nm
pumped by a AlGaAs diode laser with an absorbed pump power
for threshold of only 0.6 mW. At that time few tens of mW of pump
power was widely available from semiconductor lasers made using
GaAs/AlGaAs and InP/InGaAsP material systems. So, this pio-
neering demonstration conveyed an important message: that using
well established low loss fiber fabrication technology and semicon-
ductor laser fabrication technology, a new class of rare doped lasers
and amplifiers could be produced for new applications. This message
was particularly well received immediately by optical communica-
tion technologists and they went on to develop the Erbium (Er)-
doped fiber amplifiers for various fiber communication applications.
It was also recognized that an amplifier chain could be used for long
(~1000 to 7000 km) undersea optical communication links and that
such a system could be easily upgraded to higher data rates simply
by replacing the transmitters and repeaters on the shore — a much
easier task than laying a new cable. The first undersea fiber optic link
using an amplifier chain went into operation in the mid 1990s. Er-
doped optical amplifiers have been described in several books.!4 17

Since then, rare earth-doped fiber lasers have been developed for
many applications. Diode laser pumped fiber lasers have been pro-
duced that generate kWs of power, amplifiers with small signal gains
of >50dB and laser sources with fs pulse widths. Although many
rare earth dopants have been studied, Er, Yb, Nd, Tm-doped glasses
continue to be the work horse for many applications.

1.2. Materials

Rare earth ions doped in crystalline or glassy materials have been
studied extensively for optical applications. Glasses provide a broad
emission and absorption spectrum, as a result glass hosts are used in
many applications. Typical glass hosts are oxide and fluoride glasses.
The ground state of rare earth ions are characterized by an open 4f
shell. The free ion energy level structure of rare earth ions are quite
complex.'® The spin-orbit interaction creates a fine structure and
the levels are labeled not only by their J values but also the L and S
values.
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Fig. 1.1 Dieke diagram of trivalent rare earth ions. '8!
crystal field splitting. 20

9 The width of each level represents

The atomic forces split the 4fN orbital to 2511 levels, then the
weaker crystal field splits each free ion level into a large number
of stark levels. The crystal field splitting is ~100 to 500 cm™! (see
Sec. 3.2).18

The energy level diagram for several trivalent ions, due to Dieke,
is shown in Fig. 1.1 which is often called the Dieke diagram.!® Rare
earth ions in glass comprise an important class of laser materials.
The ordinary glass (SiO3) has the advantage that it can be drawn
into low loss optical fibers providing long interaction lengths. The
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spectroscopy of rare earth ions in glasses has been well studied. In
addition to crystal field splitting, other factors such as symmetry,
co-ordination, site location, determine the optical properties. They
have been studied using site selection spectroscopy.'®

1.3. Operating Principles

The schematic of a typical Er-doped fiber amplifier is shown in
Fig. 1.2. It consists of a pump laser diode and typically a ~10m
long Er-doped fiber. The light from the diode laser and the input
light near 1550 nm are both coupled into the fiber using a coupler.
The pump light excites the rare earth ions to high energy levels which
decay fast to an intermediate energy level (higher level of lasing tran-
sition) from which it decays to a lower lasing energy level with the
emission of a photon. In the presence of another photon of the same

Pump Amplified Signal
> 1 ——
Input Signal
(a)

Dichroic Mirror

Pump / \ Output Laser
— Iﬂ n ——

(b)

Fig. 1.2 (a) Schematic of a rare earth-doped fiber amplifier. The circle represents the rare
earth-doped fiber. (b) Schematic of a fiber laser. The mirrors could be fiber Bragg grat-
ings. The figure shows coiled fiber (circle). A wavelength division multiplexed (WDM)
coupler couples both pump and input signal into the doped fiber in (a).



