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Preface

This book is intended as a guide to solving the type of modeling and estimation problems
associated with the physics of structural damage. These two topics (modeling and estimation)
are intimately related, such that a discussion of one is at least partially incomplete without the
other. The job of the model is to understand and predict behavior, in this case the observed
behavior of a damaged structure. This model includes both deterministic (physics-driven) and
stochastic components (e.g., measurement error). The parameters that describe the model,
including damage, are typically unknown a priori and must be estimated from observed data.
This book provides the readers with both the modeling tools needed to describe structural dam-
age and the estimation tools needed to identify the damage parameters associated with those
models.

More general discussions of both structural modeling and estimation theory can be found
separately in other places. However, we have found that the modeling and estimation problems
that arise in structural damage identification differ sufficiently from those found elsewhere to
deserve separate treatment. We have also found that an integrated treatment of these topics is
lacking in a single source. Therefore, it is the goal of this book to serve as that single source.
That being said, much of the material presented generalizes to other types of modeling and
estimation problems faced by researchers in structural dynamics. Readers interested in these
more general problems will hopefully also find this a useful guide.

The material that follows was developed over a number of years and was influenced by
the thinking of a number of talented individuals. Several of these individuals we feel deserve
special mention for both their intellectual contributions and their friendship. First, we thank
Dr. James D. Nichols (Jon’s father), a Senior Scientist with the U.S. Geological Survey. His
contributions to this work were both technical (see chapter on decision theory in particu-
lar) and philosophical. Over the past two decades, we have spent much time (over many
beers) discussing efficient ways to conduct science. His strong advocacy for model-based,
hypothesis-driven science can be seen in every chapter and, to a large extent, sets the tone for
the entire book. Proponents of the “data-driven” world-view would be well served to have a
pint or two discussing this topic with Jim.

We also thank PierGiovanni Marzocca of Clarkson University. Jon was fortunate enough
to work with *Pier” during two summers at the U.S. Naval Research Laboratory (NRL). In
addition to being a good collaborator, Pier was the driving force behind much of the Volterra
series modeling which appears in several places in this book. Gustavo Rhode of Carnegie
Mellon also deserves mention. Gustavo’s attention to detail and technical brilliance in the
theory of random processes taught us a great deal on how to think about, and write about, this
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challenging subject. In the same subject area, Frank Bucholtz of NRL also deserves mention
for his willingness to host “white board” discussions on probability and statistics. Frank has
the rare ability to drill down into the details of a problem, no matter how seemingly trivial the
topic might be, to the point where you either become an expert or leave his office convinced
you understand nothing whatsoever.

We also owe a large debt of gratitude to Ned Moore (Kevin’s former Ph.D. student), now
of Central Connecticut State University. Ned was tasked with the practical implementation of
many of the system identification techniques described in this book. Chapter 9 would certainly
not have existed without his help. In addition, we thank Chris Earls of Cornell University, and
his students Chris Stull and Heather Reed, who were behind the bulk of the work on identifying
dents in plate structures.

Finally, we would be remiss in not acknowledging Dr. Paul Hess of the Office of Naval
Research. For many years now, Paul has been a strong proponent of the model-based view of
damage identification. Certainly, without his support a great deal of the material in this book
would never have been developed.

On a more personal note, the second author thanks the first author, Jon. It was Jon who
opened the door to this modeling and estimation world for me; I'm richer for it. In the process,
Jon also introduced me to my wife. So I'm doubly in his debt. And on that note, I also thank
my wife Francoise for her unbounded supply of patience and support.

Jon would like to thank his wife Susan and two children, Kirstin and Cassidy, for their
patience with this project. Jon would also like to thank his parents, Lois and Jim, for their
continued support and advice; this book is dedicated to them.

Jonathan M. Nichols
Crofton, MD, October 2015
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1

Introduction

1.1 Users’ Guide

Anyone who has done a fair bit of technical writing will likely agree that the best way to truly
understand a topic is to try and clearly explain that topic to others. There is no better way
to expose one’s own technical deficiencies than to sit down and try and describe a subject
in writing. This is certainly true of the material presented in this book. In fact, our original
intent was not to write a book but rather document what we had learned about modeling and
estimation so as to improve our own understanding and to keep from having to “relearn™ the
material over time.

In particular, we wanted to focus on some of the details of modeling and estimation that are
frequently overlooked or implicitly assumed without explanation. Understanding the origins
of these assumptions has helped us tremendously in our own research and we hope the book
provides a similarly useful reference for others. One of our chief aims is therefore to clearly
explain the roots of modeling and estimation for structural response data, tracing the math-
ematical reasoning back to the originators. So much of what we do in engineering sciences
builds on the brilliance of A. Kolmogorov (probability), G. D. Birkhoff (signal processing),
N. Wiener (spectral analysis), and J.-L. Lagrange (mechanics), to name a few. Time and time
again we have seen that those who are making the most meaningful contributions in their
respective fields of study are those who return to these foundations before moving forward.

That being said, there are different ways one can use this book. For example, one could
choose to learn the details of probability theory in Chapter 2 or simply proceed to the later,
more applied chapters and simply reference back to the mathematics when needed. The same
is true for much of Chapter 3. The material of Chapter 6 explains the origins of estimation
theory; however, one could move straight to Chapters 7-10 where that material is applied to
problems in damage detection and identification. In short, the detail is provided, but it may
not be necessary for much of what the reader is trying to accomplish. The idea was to at least
give the reader the option of exploring modeling and estimation to whatever depths he or she
deems appropriate.

From a structural modeling point of view, the book is well-suited to those who have
taken basic undergraduate courses in mechanics of solids and dynamics. In terms of math-
ematics, the book presumes familiarity with basic calculus operations, series expansions

Modeling and Estimation of Structural Damage, First Edition. Jonathan M. Nichols and Kevin D. Murphy.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.



2 Modeling and Estimation of Structural Damage

(e.g., Taylor series), as well as differential equations. Familiarity with probability theory and
spectral analysis is also a plus, although we have taken great pains to explain these topics
carefully and clearly for the interested reader. This likely places the useful starting range of
the book somewhere in the later undergraduate years. This is consistent with courses currently
being taught in the structural health monitoring (SHM) field at various universities. Our brief
survey of such courses places the majority in the junior or senior years. continuing on as part
of a graduate program.

1.2 Modeling and Estimation Overview

Most of us who entered into science and engineering disciplines did so because at some level
we were fundamentally interested in questions about how things work. Whether the curiosity
relates to atmospheric events, cell biology, or (more to the point of this book) why bridges
don’t fall down, the common link is a desire to understand the world around us. As we have all
learned by now, this understanding is achieved through modeling and prediction. We construct
models of the phenomenon of interest and predict outcomes. Models that predict well are
retained; those that do not are discarded.

The main goal of science is, in fact, to produce useful models of reality so that we may
reliably predict outcomes. There is a tremendous power in prediction. It allows us to generalize
what we have observed to things that we have not yet observed. Thus, every time we build a
bridge with a different design from a previous one, we don’t have to worry about whether
or not it will collapse. We can sufficiently model this new design and confidently predict its
integrity over the intended lifetime. The model further allows us to try a number of different
designs and predict their efficacy without having to build and test each architecture.

All models are, by definition, wrong, of course. They are simply abstractions of reality
that we find useful for their ability to make predictions. One cannot hope to model exactly
the observed data, nor would we want to. Increasing model complexity without significantly
improving prediction is essentially pointless. As Einstein put it, “It can scarcely be denied
that the supreme goal of all theory is to make the irreducible basic elements as simple and as
few as possible without having to surrender the adequate representation of a single datum of
experience” [1]. This guiding principle of modeling is sometimes referred to as the principle
of parsimony and plays a prominent role throughout this book.

In engineering we are taught to derive deterministic models by applying some basic physical
principles, for example, F = ma, and invoking some simplifying assumptions (parsimony!)
about our operating regime to yield a set of governing equations. For example, to predict the
vibrational response of a cantilevered beam to an initial tip displacement, we could start with
Newton’s laws, make some simplifying assumptions about the homogeneity of the material
comprising the beam, amplitude of the resulting vibrations, and so on, and develop a solution.
This solution is expected to be a good predictor of our observed response in the regime defined
by our assumptions. There is no need for us to solve the full (nonlinear) governing equations.

However, even with the most sophisticated of models there will always be some remain-
ing error in our predictions. We acknowledge that we cannot describe the exact behavior and
instead describe “expected” or “typical” behavior using probabilistic models. Sensor noise is
often the primary culprit in this type of error. For example, we might attach a resistive strain
gage to our cantilevered beam and record the response. We can describe most of what we
observe using our aforementioned deterministic model, however we can’t predict the exact
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voltage that will be read because of both residual model error and sensor noise. There are
a number of different “noise” mechanisms, however at this stage, it will suffice to say that
noise gives rise to observations that we cannot explain with a deterministic model.! Instead,
we describe the probability distribution of the response, that is, predict the values we are likely
to observe. It may at first seem quite unsatisfying to have to resort to a (partially) probabilistic
description of our data, however probabilistic models are quite powerful and are every bit as
useful as deterministic models in describing the world around us. We will demonstrate that
so long as we can describe our uncertainty, we can minimize its influence on our ability to
predict.

Thus, our observations are to be characterized by both deterministic and probabilistic com-
ponents. In fact, the key ingredients to any structural estimation problem are (i) a probabilistic
model describing the uncertainty in the observed data and (ii) a deterministic structural model
(or models) governed by a set of model parameters. Given these two ingredients, we can
begin to discuss the subject of estimation. This subject can be loosely defined as the pro-
cess of extracting our deterministic and probabilistic model parameters given the data we have
observed. The subject of estimation is absolutely essential to damage identification as it is
through estimation that we connect our model to reality. At the end of the day, we will declare
“good” estimates to be the ones that are highly probable. As we will see, there are two funda-
mentally different viewpoints on how to arrive at “most probable.” Once we have our model
parameters, our data model is completely specified and we can turn to the task of making
predictions and, ultimately, decisions regarding the maintenance of a particular structure.

As implied by the title, our focus is on the modeling and estimation of structural damage.
This particular problem poses some unique challenges in both arenas. With regard to the for-
mer, the structural damage will alter the model of the pristine structure, often in a nontrivial
way. Moreover, the damage model should reduce to the undamaged model in the limiting
case that some damage-related parameter goes to zero, that is, the model should predict both
healthy and damaged response data. In terms of damage parameter estimation, the problem is
similarly challenging. Typically, one would like to identify damage before it becomes large
and influences structural performance. However, the smaller the damage the less influence it
will have on the observed data, making it more difficult to estimate the associated damage
parameters. Special attention is therefore paid to both the estimates and the uncertainty in the
estimates which, for small damage, can be large. Quantifying this uncertainty is essential to
making decisions regarding how the structure is maintained. This relationship is made explicit
in the final chapter of the book.

We also cover cases where the goal is to detect the damage presence, not necessarily iden-
tify the complete damage state (magnitude, location, orientation, etc.). The approach we will
take is still based on the physics of damage, however in this case the problem will be viewed
as one of model selection. Specifically, we will consider cases where damage results in a non-
linearity in a structure that is otherwise (when healthy) best described by a linear model. Our
job will be to assess the likelihood that our observed data were produced by one of those
two models (linear vs. nonlinear). While not as powerful as approaches that identify specific
damage-related parameters, model selection can be used successfully in situations where there
is a large amount of uncertainty in the detailed physics of the damage. Moreover, we will show
that even this simple assumption about the physics of damage divorces the practitioner from

! The mathematical history of “noise™ is actually a fascinating subject summarized nicely in a review article by
Cohen [2].



4 Modeling and Estimation of Structural Damage

having to rely on basic “change detection” in a structure’s response as a damage detection
strategy.

1.3 Motivation

So why should we focus on the modeling of structural damage in the first place? After all,
the material in this book can be applied toward many other problems in structural dynamics
(in fact, the original intent of this work was to provide a general reference in structural sys-
tem identification). In looking back at our own research and that of many of our colleagues,
problems involving “structural damage™ were a recurring theme. The motivations for this
research are varied and typically include a statement suggesting that an understanding of dam-
age physics is necessary for development of some future “automated™ system for monitoring
the condition of a structure and making decisions about how to best maintain it (best typically
implied to mean, “least costly”). Indeed, there is an increasing recognition in both military
and commercial communities that an understanding of damage physics is of paramount impor-
tance. Consider, for a moment, three situations where one may want to understand and predict
the condition of a structure:

|. Improve safety
2. Reduce maintenance costs
3. Increase operational envelope.

Each of these items is a strong motivating factor for understanding damage physics with large
financial and performance incentives.

In the Department of Defense, there are financial pressures to reduce maintenance costs
while at the same time increasing the operational envelope of a given asset (e.g., increasing
ship speed while reducing the number of repairs). For example, certain classes of ships have
experienced wide-spread cracking of deck plates, requiring millions of dollars annually to
repair. Figure 1.1 shows two sample cracks, one taken from a top-side view, the other from

Figure 1.1 (a) Top-side view of a recently repaired deck plate crack and (b) view of the crack from
inside the ship. This crack would normally be hidden beneath several inches of insulation
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beneath the deck plate showing a crack that is normally hidden beneath the insulation. The
cause of this cracking has been investigated and is now understood to be due to stress corrosion
caused by sensitization of the aluminum alloy used in construction (5456 material). However,
in order for this type of cracking to initiate and persist, the material must be sustaining large
stresses. It is the origin of these stresses that is still largely unknown (at least at the time of this
writing).

In a partial response to this question, one of the deck plates of the affected ship was instru-
mented with a fiber-optic strain sensing system (see Figure 1.2). The ship then underwent a
series of high speed turns during transit, the goal being to test the strain response at the edge
of the operational envelope. The strain time-history in Figure 1.2 shows only a minor signal
resulting from these maneuvers, measuring <15 pe (micro-strain) in amplitude. This trans-
lated to a stress amplitude of <1 ksi, far below the yield stress for this material (= 33 ksi).
This is certainly useful information, however it does not offer much in the way of predictive
power. All we can say with any certainty is that these particular maneuvers are unlikely to be
the source of the cracking.

Clearly, a predictive model that could accurately forecast high stress conditions, crack
lengths and locations, and/or plate stiffness would be of much greater value. Ship operators
need to understand when a crack has evolved to the point where it is compromising the safety
of the crew or of the ship. Should the ship’s captain turn around or complete the mission? In
the absence of a model, this information is simply not available. In Chapter 10 we address
this particular problem in its entirety and show how a model-based approach can be used to
make decisions regarding how best to use a maritime asset in transit.

US Army ground vehicles have also been the subject of damage identification efforts. A
number of these vehicles were experiencing cracking in the wheel spindle (part of the wheel
hub assembly): cracks greater than (.2 in. meant that the part required replacement [4]. The

15

10
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(a) (b)

Figure 1.2 (a) Fiber-optic strain sensors are affixed to the underside of an aluminum deck plate, located
behind the insulation and (b) detrended strain time-history showing the influence of high speed maneu-
vers (turns) on the measured response of the deck at a particular location. The magnitude of the signal
(<15 pe) suggests stresses far below the yield stress of the plate. Source: Adapted from [3]. Figure 9,
reproduced with permission of the Society of Naval Architects and Marine Engineers
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(b)

Figure 1.3 Wheel spindle crack on US Army ground vehicles (a) proved a challenging problem in
damage detection. The spindle (b) is hidden behind the wheel and wheel assembly (c¢), making it difficult
to identify the damage presence without removing the vehicle from service, removing the assembly, and
visually inspecting the part. Automated methods for detecting damage in these types of situations have
the potential to eliminate costly repairs and downtime. Source: Adapted from [5], Figure 1.5, reproduced
with permission of John Wiley & Sons

question, of course, is how does one know when the crack has reached the critical length? An
inefficient strategy would periodically pull a vehicle out of service, remove the entire wheel
assembly, and check for the appearance of a crack. However, removal of an asset from service
while in-theater is a costly action to take(in terms of dollars and downtime). The particular
vehicle in question is shown in Figure 1.3 along with a depiction of the spindle location behind
the wheel (indicated by the black arrow) and a closeup of the spindle itself. In response to this
problem, researchers at Purdue University, led by Dr Douglas Adams, developed a simple test
for spindle cracks that could be performed in situ. On the basis of a finite element model of the
component, it was determined that a crack would alter the frequency response of the assembly
in a specific manner. The test therefore uses estimates of the frequency response (a subject we
discuss at length in Sections 3.3 and 6.4) to detect the crack presence without removing the
entire assembly [4].
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In civil and commercial domains, similar safety and financial pressures have yielded addi-
tional research toward the development of various “monitoring” technologies. Bridges and
other components of the civil infrastructure are now being monitored at various sites around
the globe for the express purpose of assessing structural integrity. The goal of these installa-
tions is typically to monitor peak loads or displacements to confirm they are within normal
operating ranges. As an example, consider the strain monitoring system depicted in Figure 1.4
and installed on the 1-10 bridge in New Mexico. Performed in 1997, the goal of this installation
was to demonstrate the feasibility of such a system for the monitoring of civil structures. In this
case, a fiber-optic strain monitoring system developed at the Naval Research Laboratory was
used to monitor the strain response of the bridge at various points. Among other things, the
system was used to study the peak strains observed as a function of the type of traffic traversing
the bridge. Figure 1.5 shows a histogram of strain response data obtained over many days of
operation. The histogram clearly shows two distinct peaks, associated with vehicles of differ-
ent sizes. Car traffic produces smaller strain signals (~30 pe), while trucks yield larger strains
as expected (~50 pe).

Each of these case studies is an example of what is commonly referred to as “SHM.” The
next section discusses this field in more detail, describing the basic approaches and philoso-
phies used in tackling this challenging problem. While this book is not meant to be a “SHM™
book, it certainly provides tools that are likely to be useful to those in the field. In what follows
we therefore attempt to place our work in the context of this more general area of study.

1.4 Structural Health Monitoring

The field of SHM comprises a body of work aimed at the identification of damage for the
reasons discussed in the previous section. We should state upfront that the material presented
here is not at all meant to be a comprehensive look at the SHM field as it is understood by most
practitioners. A good overview of the SHM field, including numerous approaches to damage
detection and identification, is given by Farrar and Worden [6] and also Adams [5]. Perhaps
the most glaring omission in this book is a discussion of the types of sensors used to acquire
structural response data. Data acquisition is certainly an integral part of any SHM system and
has been given extensive treatment in numerous references (see, e.g., [7] or Chapter 4 and
Appendix B of [5]). While our experimental examples make use of such systems, a detailed
discussion of their construction and operation is not provided.

In addition, one can loosely group SHM techniques into “local” versus “global™ methods.
The former, as one might guess, uses data acquired from localized areas of a structure where
damage is presumed to exist. The latter, global approach, is the focus of most of the examples
in this work and presumes that the entire structure is being interrogated (e.g., is undergoing
vibration) and that we are measuring this response at one or more locations. This represents a
more challenging problem as identification requires locating the damage from these observa-
tions. However the global approach has the obvious advantage that a priori damage location
information is not required.

Nonetheless, many of these “local™ approaches to the damage identification problem have
achieved solid results in a variety of contexts and therefore deserve mention (see, e.g., [8] for
an overview). Thermography [9], eddy-current techniques [10], and ultrasound [11] (to name
a few) have all been used to identify localized structural damage; none of these are given
in-depth treatment in this book. However, this is not to say that the methods developed in



