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Preface

Advanced mathematics that we refer to contains mainly calculus. Calculus is
the mathematics of motion and change. It was first invented to meet the
mathematical needs of the scientists of the sixteenth and seventeenth centuries,
and the needs that were mainly mechanical in nature. Differential calculus deals
with the problem of calculating rates of change. It enables people to define slopes
of curves, to calculate velocities and accelerations of moving bodies etc.. Integral
calculus deals with the problem of determining a function from information about
its rate of change. It enables people to calculate the future location of a body from
its present position and a knowledge of the forces acting on it, to find the areas of
irregular regions in the plane, to measure the lengths of curves, and so on. Now
advanced mathematics becomes one of the most important courses of the college
students in natural science and engineering.

The second edition of the book is revised based on implementation experience
of its first edition. The contents of the book are written by the authors as
follows: Professor Wenbao Ai for the first chapter, Associate professor Xiaohua
Li for the second and third chapter, Professor Jianhua Yuan for the fourth and
fifth chapter, and associate professor Huixia Mo for the sixth chapter. The book
of new edition is contributed as logically and intuitively as possible. Its Chinese
and English versions and a corresponding exercise book form a family-united
system, which is very useful to the bilingual-teaching. For any errors remaining
in the book, the authors would be grateful if they were sent to: jianhuayuan@

bupt. edu. cn.
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Chapter 1

Fundamental Knowledge of Calculus

Calculus is the mathematics of motion and change. Its object of study is about variables.
Dependent relations between variables are described by functions. And limits are a basic tool
for study of functions. In this chapter, we shall introduce fundamental knowledge of

calculus, such as sets, functions, limits, continuity, and so on.

1.1 Mappings and Functions

1.1.1 Sets and Their Operations

1. The concept of set

In mathematics, a set [ 4, iR ] is a well-defined collection of distinct objects. The
objects that make up a set, also known as the elements [ JGZ | of a set, can be anything:
numbers, people, letters of the alphabet, other sets, and so on. Specifically, a set is a
gathering together into a whole of definite, distinct objects—which are called elements of the
set.

Sets are conventionally denoted with capital letters, such as A, B, C, and so on. And
elements are denoted with lowercase letters, such as a, b, ¢, and so on. If A is a set and «a is
one of the objects of A, this is denoted by a& A, and is read as “a belongs to A”, or “a is an
element of A”. If a is not an element of A then this is written as a ¢ A or a €A, and is read
as “a does not belong to A”.

There are two ways of describing a set. One way is by enumeration, and the other way
is by intension. For example, A is the set of four seasons of a year, which can be written as
A= {spring, summer, autumn, winter}.

Let B denote the set of all the positive integers between 1 and 100, which can be written as
B={1, 2, 3, 4, ==, 98, 99, 100}.

In the above two examples, the sets are specified by listing each element of the set—called

enumeration. However, not all sets can be represented by enumeration. In this case, the set

can be specified by intension, i. e. , using a rule or semantic description to indicate the

properties of elements. If S is the set of all the elements satisfying property P, then it can be

1



written as
S={x|x has property P}.
For example, C is the set of all carnivores, which can be written as
C={x|x is a carnivore}.
Let D denote the set of all solutions to the equation 2* —4=0, which can be written as
D={x|2*—4=0}.

If a set S is composed of n elements, then S is a finite set [ g BR4E |, otherwise, it is an
infinite set [ TG4 |, where n is a certain natural number. For example, both sets A={a,b,c,d}
and B={1,2,3,4,5} are finite sets, and the set C={x|x is a real number greater than 1} is an
infinite set.

Here we show some commonly used sets of numbers as follows:

N={x|x is a natural number} ={0,1,2,++};

N, ={x|x is a positive natural number}={1,2,};

Z={x|x is an integer} ={0,41, +2,-};

Q={x|x is a rational number} ;

R={x|x is a real number}.

Note that sometimes we mark “* ” at the top-right corner of the letter symbol of a
number set to denote the number set without the element 0, and mark “+” in the subscript
to denote the number set without the negative numbers. For example, R* denotes the set of
all real numbers without 0, and R denotes the set of all nonnegative real numbers.

Given sets A and B, A is called a subset [ T-4£ ] of B, if every element of A is also an
element of B. It is notated by ACB (read as “A is contained in B”, see Figure 1. 1. 1(a)).
Equivalently, we can write B2A, read as “B includes A”, or “B contains A”. If A is not a

subset of B, then we write ALB (Figure 1. 1. 1(b)). For example, we have NCQZR and
QLR, .

O, a\

(a) (b)

Figure 1. 1.1

If both sets A and B are subsets of each other, i.e. , ACB and BEA, then the sets A
and B are equal [ #H5% ], notated as A=B. If A is not equal to B, then we write A#B . For
example, suppose that

A={—1,1}, B={x|2*—1=0},
then we have A=B.

If two sets A and B satisfy ACB and A7 B, then A is called a proper subset [ 5 T4 ] of
B, written as ACB. For example, NCZ, ZCQ and QCR.

An empty set or null set [ 254 | is a set with no elements. It can be symbolized with &.



For example, the real solution set for the equation x*+1=0,
{x|x€ER and 2*+1=0},
is an empty set. It is agreed that the empty set is a subset of any set, i.e., for any set A,
there is JCZA.
Example 1. 1.1 Find all the subsets of the set A=1{1,2,3}.
Solution &, {1}, {2}, {3}, {1.2}, {2,3}, {1,3}, {1.2.3}. |
Example 1.1.2 Let A={(—2,—1,1,2}) and B={x |2’ — 2" —4x+4=0,x € R}.
Determine if the relationship A=B is ture.
Solution As the real solutions to the equation x* —2* —4x+4=0 are x1 =1, 2, =2,
and x;=—2, we have
B={1,2,—2}.
Then there are BCA and AZLB. Therefore, AF#B. [ ]
2. Set operations
There are four fundamental operations of sets: union [ Jf], intersection [ 3¢ |, difference
[# ] and complement [ %} ].
(1) Union: AUB
Given sets A and B, the union [ {4 ] of A and B, denoted by AUB (see Figure 1. 1.2
(a)), is the set of all elements that are in A or in B.
AUB={x|x€ A or x€ B}.
For example,
{1,2,3)U{2.3,4)=1{1,2,3,4};
{x]x€ER and x<<0} U {x|x€ER and =0} =R.
(2) Intersection; A B
Given sets A and B, the intersection [ 3£ | of A and B, denoted by A B (see Figure
1.1.2(b)),is the set of all elements that are both in A and in B.
ANB={x|x€ A and € B}.
For example,
{1,2,3}1{2.3,4}={2,3};
{x]lxz€ER and <0} N{x|xER and =0} ={0}.
(3) Difference: A—B
Given sets A and B, the difference [ 224 ] of A and B, denoted by A—B or A\B (see
Figure 1. 1. 2(c)), is the set of all elements that are members of A but not members of B.
A—B={x|x€A and x €& B}.
For example,
{1,2,3)—{2,3,4}={1};
{x]xz€R and 22} —{x|x€ER and x>0} ={x|x€ER and x<<0}.
(4) Complement; A€
In certain settings, all sets under discussion are considered to be subsets of a given universal set
[44] X. In such cases, the complement [ %M E, 434 | of a set A, denoted by A® (Figure 1. 1. 2
(d)), is defined as



A=X—A.
For example, the complement of the set A={x|0<a<{l} is
A={x|x<<0 or x>1}.

ANB A

(a) (b) (c) (d)
Figure 1. 1.2

(5) Fundamental rules of set operations

Theorem 1. 1. 1(Rules of set operations) Let A, B and C be three sets. There are

(D Commutative law [ &£ ] AUB=BUA;ANB=DBA.

@ Associative law [Z5 5] (AUB)UC=AUBUO ;(ANBNC=ANBNO.

@ Distributive law [/t ] (AUBNC=ANOUMBNO;

ANBUC=AUONBUOC;
(AAB)NC=(ANO\NBNO.

@ Idempotent law [ 4] AUA=A;ANA=A.

® Absorption law [T W] AU =A, ANI=. If ACB, then AUB=B and A(\B=A.

The above rules can be verified by the definition of equality of sets. Here we present the
proof of AN(BUC)=(ANB)U(ANC) in the distributive law, and the rest is left to the
readers.

Example 1.1.3 Let A, B and C be three sets. Prove AN (BUCO=ANBUANO.

Proof We first try to prove AN (BUCOZANB)UANO).

xEANBUC)=>x€ A and x€BUC,

=>1€A and “x€ B or x€(C”,

=“r€A and x€B” or “2€ A and x€C”,

=>xE€ANBorx€ANC,

=€ (ANBUANO.

Then we shall prove (A(NB) UANCOZTANBUO).

€ ANBUMANC)=xeANBorxzeANC,

=>“r€A and x€B” or “x€ A and x€C”,

=>1€A and “x€ B or x€(C”,

=x€A and x€BUC,

=2z ANMBUO.

Hence, AN(BUO=ANB ULNO. |

Note that the symbol “=" represents “deduce” (or “imply”) in the above proof. If we



replace the symbol “=" with the symbol “&” (be equivalent to) in the proof of “AN(BUC)Z
(ANB)UANC)”, then the second part of the proof can be accomplished.
(6) The Cartesian product of sets
In set theory, a Cartesian product [ i £ JLFH] is a mathematical operation that returns a
set from multiple sets. That is, for two sets A and B, the Cartesian product, denoted by
AXB, is the set of all ordered pairs (x,y), where x& A and yEB, i.e. ,
AXB={(x,y)|x€A and x€ B}.
For example, RXR={(x.y) | rER, yER} is the set of all points in the xOy-plane. RXR is
usually written as R*. And an n-dimensional space is denoted by
R'={(x) 20+ 2,) | 21225450+ s 2, ER}.
3. Intervals and neighborhoods
We focus on sets of real numbers, i. e., subsets of R. An interval is a set of real
numbers between two other numbers, and is a widely used class of sets of real numbers. Let
a and b be two real numbers, and a<{b. The closed interval [a,b], the open interval (a,b),
and the half-open intervals [a,b) and (a,b] are the following sets of real numbers;:
La,b]={zx|a<<a<<b};
(a,b)={x|a<<a<lb};
La.b)={x|a<a<lb};
(a,b]={x|a<<ax<b}.
Here, a and b are the endpoints of intervals. For the open interval (a,b), there are a € (a,b)
and 6 €& (a,b). The above four intervals are bounded intervals and 5—a is called the length of
the intervals. Bounded intervals are the segments with finite lengths on the number axis (see

Figure 1. 1. 3).

[a, b] (a, b)
L _I l 1 [ l -
o) a b x 0 a b x
[a, b) (a. b]
0 a b x e} a b x
Figure 1. 1. 3

Besides, there are intervals whose endpoints are =+ oo, and we call these intervals
unbounded intervals. For example,
la,too)={x|x=a};
(—oo,b)={x|x<<b};
(—oco,+co)={x|xrER}=R.
Here “+c0” and “—co” are read as “positive infinity” and “negative infinity”, respectively.

The unbounded intervals [a,+o°) and (—co,b) are shown in Figure 1. 1. 4.



[a, +oo) (—ee, b)

Figure 1. 1.4

In later discussions, if we do not focus on whether the interval contains its endpoints,
and whether it is a bounded interval or not, then we simply call it an “interval” [ X [d] ],
denoted by the symbol I.

Another widely used concept is neighborhood [ 4§15 ]. Any open interval with the center
(midpoint) a is called the neighborhood of a, and we write it as U(a). Let a&€R, §>0 and
the open interval (a—¢&,a+9) is a neighborhood of a, which is called the § neighborhood of
a. It is the set of all real numbers whose distance from a is less than &, denoted by U(a,d) .,
that is

UCa,»)={x|a—o<x<<a+o)={z||x—al|<5}.
Here a is the center of the neighborhood, and § is its radius (see Figure 1.1.5).

é 0
a—d a até ¥
Figure 1. 1.5

The set U(a,0) — {a} is the § neighborhood of a without the number a, which is called
the deleted § neighborhood of ¢ and denoted by Ua»®) . that is
Ula,»)={zx |0<<|x—al|<5}.
For convenience, we sometimes say that the open interval (a — &, a) is the § left

neighborhood of a and the open interval (a,a+¢) is the & right neighborhood of a.
1.1.2 Mappings and Functions

*1. The concept of mapping

Definition 1. 1. 1(Mapping [ Bt 5} ]) Let A and B be two nonempty sets. If there exists
such a rule f that every element x in A is associated with one unique element y in B under
the rule f, then f is called a mapping [ B4} ] from A to B, which is denoted by

f:A—B,
or fra—>y=f(x), xEA.

Here y is called the image [ %] of x under the mapping f, and x is called the inverse
image [ Jf 1% ] of y under the mapping f. The set A is called the domain (or domain of
definition) [ % 3 ] of the mapping f, denoted by D,, i.e., D;=A. The set composed of
the image points of all the elements in A is called the range [ {H1#, ] of the mapping f, denoted
by R, or f(A), i.e.,

R,=f(A)={f(x)|x€A}.

Note (1) Three essential factors of a mapping are the domain A, the superset B of the

range, and the rule f.
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