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Conversion factors for permeability

and hydraulic-conductivity units

In this book we emphasize the use of permeability (k) and SI units
(m?) as the measure of ease of fluid flow under uncqual pres-
sure. However hydraulic conductivity (K) and a variety of other
units ave used in practice. Permeability is a vock property, whereas
hydvaulic conductivity veflects both rock and fluid properties (fluid
viscosity and density) —see Chapter 1. The approximate conversion
Sfrom k to K here assumes that the fluid is water at standard tem-
perature and pressure. Water viscosity varies by a factor of ~26
and water density by a factor of ~3 between F C and the criti-
cal point of water. Other fluids such as hydrocarbons can exhibit

much larger viscosity vanges. In the table below, we show the unit
conversion for 1 m® as well as 105 m? which is a move realistic
permeability for geological materials,

Permeability, k Hydraulic conductivity, K

cm? Darcy ms md’ ftd=’
1m? = 10* 10" 107 9x10"  3x10'
10""m’= 10" 0.001(1mD) 1078 9x107*  3x107?
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CHAPTER 1

Introduction

TOM GLEESON! AND STEVEN E. INGEBRITSEN?

Y Department of Civil Engineeving, University of Victoria, Victoria, BC, Canada; > U.S. Geological Survey, Menlo Pavk, CA, USA
4 Y . 3 ” :

Permeability is the primary control on fluid flow in the Earth’s
crust. Thus, characterization of permeability is a central con-
cern of many Earth scientists; hydrogeologists and petroleum
engineers recognize it as their most essential parameter. More
broadly considered, permeability is the key to a surprisingly
wide range of geological processes, because it also controls
the advection of heat and solutes and generation of anoma-
lous pore pressures (Fig. 1.1). The practical importance of
permeability — and the potential for large, dynamic changes
in permeability — 1s highlighted by ongoing issues associated
with hydraulic fracturing for hydrocarbon production (“frack-
ing”), enhanced geothermal systems, and geologic carbon
sequestration.

The measured permeability of the shallow continental crust
is s0 highly variable that it is often considered to defy systematic
characterization. Nevertheless, some order has been revealed
in globally compiled data sets, including postulated relations
between permeability and depth on a whole-crust scale (i.e.,
to approximately 30 km depth; e.g., Manning & Ingebritsen
1999; Ingebritsen & Manning 2010) and between permeability
and lithology in the uppermost crust (to approximately 100 m
depth: Gleeson et al. 2011). The recognized limitations of these
empirical relations helped to inspire this book.

Although there are many thousands of research papers on
crustal permeability, this is the first book-length treatment.
Here, we have attempted to bridge the historical dichotomy
between the hydrogeologic perspective of permeability as a
static material property that exerts control on fluid flow and
the perspective of economic geologists, crustal petrologists,
and geophysicists who have long recognized permeability as a
dynamic parameter that changes in response to tectonism, fluid
production, and geochemical reactions.

This book is based in large part on a special thematic issue of
the Geofluids journal published in carly to mid-2015 ( Geofluids
15:1-2). Several changes and improvements differentiate the
book from the thematic issue: the authors of the 22 origi-
nal Geofluids papers have had the opportunity to revise and
update their respective chapters, and three additional chapters

have been added to fill gaps in the topical coverage (Ishibashi
et al., this book; Taron ez al., this book; Yardley, this book);
the introductory material has been revised and expanded;
the reference list has been consolidated and updated; an
index has been added; and a complementary website (http://
crustalpermeability.weebly.com/) has been built to house
permeability data and other supporting information. Much of
this introduction, and much of the bridging material between
topical sections of the book, is derived from the introduction to
the Geofluids thematic issue, with changes and additions where
appropriate.

MOTIVATION AND BACKGROUND

This book is motivated by the controlling effect of permeability
on diverse geologic processes; by practical challenges associ-
ated with emerging technologies such as hydraulic fracturing,
enhanced geothermal systems, and geologic carbon sequestra-
tion; and by the historical dichotomy between the hydrogeo-
logic concept of permeability as a static material property that
exerts control on fluid flow and the perspective of other Earth
scientists who have long recognized permeability as a dynamic
parameter. Issues associated with hydraulic fracturing, enhanced
geothermal systems, and geologic carbon sequestration have
already begun to promote a constructive dialog between the
static and dynamic views of permeability, and here we have made
a conscious effort to include both viewpoints. We focus on the
quantification of permeability, encompassing both direct mea-
surement of permeability in the uppermost crust and inferential
permeability estimates, mainly for the deeper crust.

The directly measured permeability (%) of common geologic
media varies by approximately 16 orders of magnitude, from
values as low as 10?3 m? in intact crystalline rock, intact shales,

and fault gouge, to values as high as 107" m?

in well-sorted
gravels. Permeability can be regarded as a process-limiting
parameter in that it largely determines the feasibility of advec-

tive solute transport (k2 1072°m?), advective heat transport

Crustal Permeability, First Edition. Edited by Tom Gleeson and Steven E. Ingebritsen.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.

Companion Websites: www.wiley.com/go/gleeson/crustalpermeability /

http://crustalpermeability.weebly.com/
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Fig, 1.1. Crustal-scale permeability (k) data. Arrows above the graph indicate approximate ranges of k over which certain geologically significant processes are likely.
The “mean crust” k curve is based on k estimates from hydrothermal modeling and the progress of metamorphic reactions (Manning and Ingebritsen 1999). However,
on geologically short timescales, kK may reach values significantly in excess of these mean crust values (Ingebritsen and Manning 2010). The power-law fit to these
high-k data - exclusive of the Sumatra datum (Waldhauser et a/. 2012) - is labeled “disturbed crust.” The evidence includes rapid migration of seismic hypocenters
(solid circles), enhanced rates of metamorphic reaction in major fault or shear zones (open circles), recent studies suggesting much more rapid metamorphism than
had been canonically assumed (solid squares), and anthropogenically induced seismicity (open squares); bars depict the full permissible range for a plotted locality
and are not Gaussian errors. Red lines indicate k values before and after enhanced geothermal systems reservoir stimulation at Soultz (upper line) (Evans et al. 2005)
and Basel (lower line) (Haring et al. 2008) and green rectangle is the k-depth range invoked in modeling the formation of porphyry-copper ores (Weis et al. 2012).

(See color plate section for the color representation of this figure.)

(k>107'""m?), and the generation of elevated fluid pressures
(k<107 m?) (Fig. 1.1) — processes which in turn are essential
to ore deposition, hydrocarbon migration, metamorphism,
tectonism, and many other fundamental geologic phenomena.

In the brittle upper crust, topography, magmatic heat
sources, and the distribution of recharge and discharge dom-
inate patterns of fluid flow, and externally derived (meteoric)
fluids are common (e.g., Howald ¢z al, this book). In contrast,
the hydrodynamics of the ductile lower crust are dominated
by devolatilization reactions and internally derived fluids (e.g.,
Connolly & TPodladchikov, this book). The brittle-ductile
transition between these regimes occurs at 10-15 km depth in
typical continental crust. Permeability below the brittle—ductile

transition is non-negligible, at least in active orogenic belts
(equivalent to mean bulk % of order 1071 to 107 m?) so that
the underlying ductile regime can be an important fluid source
to the brittle regime (e.g., Ingebritsen & Manning 2002).

The objective of this book is to synthesize the current
understanding of static and dynamic permeability through
representative contributions from multiple disciplines. In this
introduction, we define crucial nomenclature, discuss the “stat-
ic” and “dynamic™ permeability perspectives, and very briefly
summarize the contents of the book. Additional summary and
synthesis can be found before and after the three main sections
of the book, which are labeled “the physics of permeability,”
“static permeability,” and “dynamic permeability.”



NOMENCLATURE: POROSITY, PERMEABILITY,
HYDRAULIC CONDUCTIVITY, AND RELATIVE
PERMEABILITY

Here, we define some of the key hydrogeologic parameters that
are repeatedly used in this book, namely porosity, permeabil-
ity, hydraulic conductivity, and relative permeability. These are
conceptually related but distinct concepts.

First, we note that all of these parameters are continuum
properties that are only definable on a macroscopic scale. Per-
haps most obviously, at any microscopic point in a domain,
POrOsity (V,yig/ Vi

1 in a pore space. As one averages over progressively larger vol-

= n) will be either 0 in the solid material or

umes, the computed value of # will vary between 0 and 1 and, if
the medium is sufficiently homogeneous, the volume-averaged
value of » will eventually become nearly constant over a vol-
ume range, which has been termed the representative elemen-
tary volume (REV) (Bear 1972, 1979). Figure 1.2 shows, for
example, a hypothetical section of volcanic ash-flow tuff; note
the distinctly different porosity of the flow center relative to the
flow top and bottom.

The concept of permeability — the ability of a material to
transmit fluid — also applies only at an REV scale and can be
regarded as reflecting detailed solid—fluid geometries that we
cannot map and thus wish to render as macroscale properties.
Exact analytical expressions for permeability can be obtained for
simple geometries such as bundles of capillary tubes or paral-
lel plates (constant-aperture fractures), but actual pore-fracture
geometries are never known.

Porosity (z)-permeability (%) relations have been the subject
of many studies (e.g., Luijendijk & Gleeson, this book), and
there is often a positive correlation between these two essential
quantities. However; even in the case of classical porous media,
a correlation between z and k cannot be assumed for mixed-size
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Fig. 1.2. Cross section through a hypothetical ash-flow tuff unit showing typical
values of porosity (n) and permeability (k). The thickness of individual ash-flow
tuff sheets ranges from a few meters to more than 300 m. Tertiary ash-flow tuffs
are widespread in the western United States, particularly in the Basin and Range
province. (Adapted from Winograd 1971.)
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grains, or when comparing media with greatly different grain
sizes. For instance, although there is a positive correlation
between # and k for clays themselves, clays are 10*-10'? times
less permeable than well-sorted sands (e.g., Freeze & Cherry
1979), despite having generally higher porosities. Furthermore,
positive correlation between # and % cannot be assumed in
more complex media. Consider again our ash-flow tuff example
(Fig. 1.2): the top and bottom of an ash flow cool relatively
rapidly, retaining their original high porosities (approximately
0.50), but the permeability of this “unwelded” material is
relatively low, because the pores are small and not well con-
nected. If the ash flow is sufficiently thick, pores deform and
collapse in the slowly cooling interior, where the final value of
porosity can be quite low (<0.05). However, the flow interior
also tends to fracture during cooling, and the interconnected
fractures transmit water very effectively despite the low overall
porosity. The net result of the cooling history is that flow
interiors typically have up to 10* times higher permeability
than “unwelded” flow tops and bottoms, despite their much
lower porosities (0.05 vs. 0.50).

Both laboratory and in sitsr (borehole) testing normally
return values of hydraulic conductivity (K) rather than per-
meability (&), and this parameter reflects both rock and fluid
properties:
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where p.g is the specific weight of the fluid and pis its dynamic
viscosity. In order to compare rock properties among different
geothermal conditions, or different fluids (e.g., hydrocarbons
vs. aqueous fluids), it is necessary to convert measured values
of K to values of & (e.g., Stober & Bucher, this book). Con-
sidering once again our ash-flow tuff example: if the surficial
outcrop depicted in Figure 1.2 could somehow be translated
from standard temperature and pressure (STP=15°C, 1 bar)
to 300°C and approximately 1000 bars (approximately 10 km
depth), without any changes in its physical morphology, its per-
meability 2 would not change, but its hydraulic conductivity
would be approximately 10 times larger because of the increase
in the p,/p, ratio.

Finally, the empirically based concept of relative permeability
is used to extend the linear flow law for viscous fluids (i.e.,
Darcy’s law) to multiphase systems. Relative permeability (%,)
represents the reduction in the mobility of one fluid phase due
to the interfering presence of another fluid phase in the pore
space and is treated as a scalar varying from 0 to 1, usually as
some function of volumetric fluid saturation (e.g., Viquia/ V.
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where for instance [V, + Vigual/ Vieia=1). This concept
1s widely invoked in the context of hydrocarbon migration
and production (oil-gas-liquid water) and unsaturated flow
above the water table (air-liquid water), but is also applied
to multiphase flow in hydrothermal systems — for instance by
Weis (this book), who allows for the presence of three distinct

phases in the void space (vapor + liquid + solid NaCl). Because



