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Preface

This book is intended as an introduction to fixed point theorems
and to their applications in analysis. Apart from applicable
theorems, I have included those which interested me.

Since applications usually involve spaces of functions, I give
Banach space versions of most of the theorems. The book is thus
aimed at readers with a general interest in functional analysis.
However, I have hardly touched on a series of recent develop-
ments, by F. E. Browder and others; for these see Browder’s .
forthcoming book. To fill obvious gaps in the direction of pure
topology, the reader can refer to the excellent surveys by van
der Walt (1963), Bing (1969), and Fadell (1970), and to Brown’s
book (1970).

The methods of proof are those which will seem natural to the
functional analyst. Most of the results are derived from
Brouwer’s fixed point theorem for the ball B*; to get this
theorem we use some facts about homology groups. After that,
algebraic topology is rarely mentioned. I have chosen to give
geometric proofs, rather than that to develop degree theory and
base everything on that. The degree and other invariants are
discussed at the end of the book. ,

I must thank Dr F. Smithies for suggesting that I write this
book, and for helpful comments on successive versions of it.
I am also indebted to the University of Cape Town for two
periods of study leave during which much of the writing was
done, and to the Universities of Cambridge, Edinburgh and
Wales (Swansea) for their hospitality on these occasions.
I should mention, too, the contribution of various members of
those universities who attended my lectures at a time when
I was still sorting out my ideas.

However, my greatest helper has been Daphne, who provided
conditions in which I felt like working, and who spent many
hours typing the manuseript. D. R. SMART
Cape Toun
March 1973 [ vii ]



Symbols used

Interior of a set 4

Closure of .#

Boundary of .#

Convex cover of .#

Closed convex cover of .4

Space of continuous bounded functions on .#
Measure of noncompactness (p. 32)
Linear subspace spanned by .# ‘
Space of squ&re-summablé sequences
Hilbert cube (p. 13)

Domain of a mapping T'

Range of T'

Graph of T

Set of fixed points of T'
e-neighbourhood of =

Inner product

Empty set

Identity operator

Dual of Banach space #

Group of integers

Degree (pp. 77, 80)

Rotation (p. 75)
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1. Contraction mappings

1.1 Introduction

Consider a mapping 7' of a set .# into .# (or into some set
containing .#). One of the few questions we can ask (in this
general setting) is whether some point is mapped onto itself; that

is, does the equation
Tz==x

have a solution ? If so, z is called a fized point of T'. The theorems
we prove assert that, under suitable conditions on .# and T,

a fixed point exists.

- Obviously, the conditions must always imply that # + &.
Usually, # is a topological space and some conditions of
continuity and compactness (or at least compléteness) are
needed.

We shall see that many existence theorems of analysis can be
treated as special cases of suitable fixed point theorems.

In the present chapter, we place rather strong conditions on 7'
and rather weak conditions on .#. Because of the simplicity of
its assumptions, 1.2.2 is the most widely applied fixed point
theorem. We discuss some of its applications in §§1.3, 1.4, 6.2
and 6.5.

We first give a few simple and general results.’

TreEorREM 1.1.1 If T maps A into M then any fized point z
of T is in nT". 4. Conversely, if nT™.4 = {y}, a one-point set,
then y is a fized point for T.

Proof. Since Ty must be in N T™.#, we have Ty = y. [

TrEOREM 1.1.2 (Principle of successive approximations)
If T is continuous on a Hausdorff topological space A to A and
if lim Tz = y exists then Ty = y.

Proof. Ty = T (lim Tz) = lim Tz = y. O

(1]



2 Contraction mappings

TEBOREM 1.1.3 Let % be a meiric space. Suppose that T is a
continuous mapping of (a closed subset of ) U into a compact subset
of % and that, for each € > 0, there exists x(e) such that

p(Tz(e), w(e)) < e. (1)
Then T has a fixed point.

Proof. Let T map the closed subset .# into the compact
subset 2. Since T'z(¢) is in 2 we can assume that for some
sequence €, >0 we have T'z(e,)>y€Z. By (1) we also have
z(e,) >y so that y € 4. Thus Ty is defined and

Ty = T (limx(e,)) = limTx(e,) =y. O

DerFiNITION 1.1.4 The points z(¢) satisfying (1) will be
called e-fized points for T'.

We shall often use 1.1.3 to obtain fixed points from e-fixed
points. However, the usual position is that we can obtain the
e-fixed points by a constructive argnment. Theorem 1.1.3 does
not give & constructive proof for the existence of fixed points.
Brouwer (1952) argues that only e-fixed points have meaning for
the intuitionist.

1.2 The contraction mapping theorem

Derinition 1.2.1 Let T be a mapping of a metric space
A into 4. WesaythatTma.co'ntmctwnmappmglfthere
exists a number k such that 0 < k < 1 and

p(Tz,Ty) < kp(z,y) (Y=z,ye.4). (1)
The following result is called the Contraction Mapping Theorem.

TEEOREM 1.2.2 (Banach, 1922) Any contraction mapping of
a complete non-empty meiric space M into M has a unique fized
point in M.

Proof. Let the mapping 7' satisfy (1) for some k < 1. Choose
any point y in .#. The sequence of points 7™y satisfies, for
s sl PUTy, Ty < kp(TYy, T7y),
so that by induction

p(Ty, T™y) < k"ply, Ty).



1.2 The contraction mapping theorem 3
By the triangle inequaﬁty we have form > n \
p(Ty, Tmy) < p(Try, Tr+iy) +p(T741, Tsy) .+ p(Tm-1y, Tmy)
< (B +Em 4+ ) p(y, Ty)
< kr(1-k)7 oy, Ty). - (4)
Thus p(T™y, T™y)—0 if m,n—>oc0. Since .# is complete the
sequence 7™y has a limit z in .#. By 1.1.2, zis a fixed point for 7'.
This fixed point is unique since if 7'z = z and Tw = w we have
pla w) = p(T%,T0) < kplzy w)
8o that p(z,w) = 0; thatis,z=w. O

For applications of 1.2.2, some further facts are important.

REMARK 1.2.3 Under the conditions of 1.2.2:
(i) the fixzed point z can be calculated as im Ty _for any y
in M,
() p(T™y,2) < k(1 —k)p(y, Ty); :
(iii) For any y in #, p(y,z) < (1—k)7 p(Ty,y).
Proof. s
(i) is clear from the proof of 1.2.2;
(ii) follows by letting m—»co in the inequality (A);
(iii) follows from (ii) or from the inequality

p(y,2) < ply, Ty) +p(Ty, T2) < ply, Ty) +kp(y,2). O

There is an alternative form of 1.2.2 in which the contraction
mapping is only defined on a suitable neighbourhood of the
- point y which is taken as the first approximation. This is sug-
gested by 1.2.3 (iii), which gives a neighbourhood of % in which
the fixed point must lie. For details and apphca,tlons of this
alternative theorem, see Copson (1968).

1.3 The Cauchy-Lipschitz theorem

We use the contraction mapping theorem to establish an
existence—uniqueness theorem for ordinary non-linear dif-
ferential equations.



4 Contraction mappings

a—d c‘; u—{'-d

Fig. 1

TreorEM 1.3.1 (Lipschitz, 1876) Let f be continuous and
satisfy a Lipschitz condition with respect to y:
[f&9)—f¢t2)| < K|y—2|
in some neighbourhood Ny of (a,b). Then the differential equation
with initial condition
d
Z=1ty), f@=>b (1)

has a unique solution in some neighbourhood of a.
Proof. We observe that (1) is equivalent to the integral
equation

y(t) = b+ f :f(x, y(a)) de (2)

(for an approach which makes this transformation of the
problem seem less accidental, see Chapter 5). We consider a set
A of functions, and a mapping U in .#. The image Uy of a
funection y with values y(z) will be given by

(Uy)(t) = b+ J:f(z, y(a)) d. (3)

How can we find a set of funetions which is mapped into itself
by Ut We first choose a compact neighbourhood N, of (a,b),
inside NN;; then f is bounded on N,, say

|f(z,9)| <L ((=,y)eNp).



1.3 The Cauchy—Lipschitz theorem 5
If y is a function with graph in N, we have

2}
|Uy(t)~b| = | faf(t.ya))dt

< L|t—a].

This means that if y is a continuous function defined for
|t—a| <d.

for which |y(t)—b| < Ld, then Uy satisfies the same conditions.
We must choose d small enough for the rectangle (figure 1)

R = N(a,d)x N(b, Ld)

to be in N,. We then define .# to be the set of continuous
functions with graphs in R,.and our argument shows that .# is
mapped into itself by U. We use the upper bound norm on .#.

To ensure that U is a contraction mapping we should also
arrange, in choosing d, that dK < 1. Then we have, for y and 2
in A4 .

1090~ U] = |[* @900~ 0,101 s
. < dsup | f(2, y()) —f(@2(2))|
< dK sup | y(2) —z(x)|.
Thus  |Uy-— Uz| = sup,|Uy(t) — Uz(t)| '
< dKsup | y(x) —2(2)| = dK |y 2|,

and since dK < 1, U is a contraction mapping. Thus by 1.2.2,
U has a unique fixed point in .#. This means that there is &
unique function in .# which is a solution of (1). Since any

solution of (1) is in .# (for d sufficiently small), there is a unique
solution of (1). O

1.4 Implicit functions
We give a second application of the contraction mapping
theorem.

THEOREM 1.4.1 (Implicit Function Theorem) Let N be a
neighbourhood of a point (a, b) in R?. Suppose that f is a continuous



6 - . Coniraction mappings
SJunction of x and y in N and that 8f|oy exists in N and is continuous
at (a,b). Then if
)

. of
() 5 @b) +0,
(ii) f(a,b) =0,

there is a unique continuous function y, on some netghbourhood of a,
such that f (z, yo()) = 0.

Proof. We write D,for df (a, b)/éy. We will look for a fixed point
of a mapping defined by

Tz(z) = 2(@)— Dyt f(, 2(2)).

(This mapping is suggested by the idea of finding y.(z) by
Newton’s niethod.) It is clear that if y is fixed we must have
fl@,y(x)) = 0. We will find a set of functions .# such that 7'
maps 4 into .4 and that 7' is a contraction mapping in ..
Within N we choose a closed rectangle

- R = N(a,e)xN(b,é)
small enough to give

9
ppd @y-1|<i (@weR),
[D7f(,0)| < 38 (|=] <e).
Now write C = C(N(a,¢)) and put

M ={yeC:yla)=0b, |y-4p| <3}

(where £ is the function identically equal to b). Clearly 7' maps
A into C. We have

|T8—Bl = |1 D7 ()] < $5.
For (z,y) in R we have
R g2
'5?;(3/— (] f(zsy)) = (1_ 7 Tyf(x:y)) % ;
Thus by the lemma below, if ¥ and z are in .#,
| Ty(@) - Tz(2)| < ¥y(@)—2(2)| (veN(a,e),



1.4 Implicit functions 7
so that |Ty—Tz| < |y —z|. Thus 7' is a contraction mapping.

|Ty—p| < |Ty—TB|+|TA—B|
< Hly-Bl+|T8-8
<304348=2¢

so that 7' maps .# into .#. Since .# is complete, T' has a unique
fixed point in-.#. Thus our problem has a unique solution which
can be calculated by successive approximations, using the
operator 7' and starting from any member of 4. O

Lemma If |offéy| < } at all points between (z,y) and (z,z)

then |f(z,y)—f(x,2)| < }|y—2|-
Proof. Use the mean value theorem. [

The argument given above can be used to prove a far more
general form of the implicit function theorem. If f maps #x €
into ¥, where # and € are Banach spaces we must interpret
D, as the Fréchet derivative of f at (a,b); we replace (i) by the
oondlhon that (D,)~* exists. We interpret .# as a space of
continuous functions defined on a neighbourhood in # with
values in €. Since the lemma remains true for- the Fréchet
derivative, all details of the proof carry over directly to the
general case. In particular, if f maps R™ x R™into R™ we interpret
D, as an n x n matrix of partial derivatives with respect to the
y-variables and replace (i) by the condition that this matrix has,
an inverse. '

In the above argument each value of y,() is calculated by a
variant of Newton's method. It is easy to adapt the argument to
show that for each z in a neighbourhood of a, the value y,(z)
(such that f(z, y,(#)) = 0) can be found by the ordinary Newton’s
method. Thus the conditions of the theorem give sufficient
conditions for Newton’s method.

1.5 Other applications of Banach’s theorem

Various applications of the contraction mapping theorem are
given in Kolmogorov and Fomin (1957). These provide excellent
illustrations of the use of fixed point theorems in analysis.



8 : Contraction mappings

It is sometimes doubtful whether to refer to the contraction
mapping theorem in a proof, or to carry out the discussion in
terms of successive approximations. In linear problems we could
just as well use the Neumann series (for example, in the appli-
cations in Kolmogorov and Fomin; or in Harris, Sibuya and
Weinberg (1969)). On the other hand, in the discussion of the
Schwarz alternating method in Courant and Hilbert (1962,
p- 293), it is clear that the discussion could have been phrased
in terms of a contraction mapping but in fact the convergence of
the successive approximations is discussed directly. The only
disadvantage — virtual repetition of the proof of the contraction
mapping theorem -is slight (since this proof is short) and is
compensated by the adva.nta.ge of having an argument complete
in itself.

- In the case of the more difficult fixed point theorems which we

will give later, there is a definite gain when the theorem is applied,
gince by appealing to a general theorem which depends on a deep
argument, we can hope to avoid going through an argument of
similar depth in the partlcnla.r case to which the theorem is
applied.

Exerclses‘ :

1. Show (by 1.2.2) that there is a unique continuous fnnohon
Jon [—1,1] such that

J(z) = z+}sinf(2).

(Consider continuous functions such that |f(z)| <

2. Extend 1.2.2 to the case where 7% is a contraotmn mapping
for some integer k > 1 (see 5.2.1).

3. If # is a compact non-empty metric space, 7' maps .4
into .# and p(Tz,Ty) < p(x,y) for  + y, show that T has a
unique fixed point (see 5.2.3).

4. If T is a contraction mapping of a Banach space ¥~ into
itself, show that the equation Tf—f = ¢ has a unique solution f
for each g in ¥~ Also show that 7' — I and (7' — I)~! are uniformly
continuous (see 4.4.2).

5. If T'is continuous in a metric space and p( 7"z, T"*1z) — 0
then any limit point of {7z} is a fixed point of 7.



2. Fixed points in compact convex sets

The principal results of this chapter are Brouwer’s theorem
(2.1.11), Schauder’s theorem (2.3.7) and Tychonoff’s theorem
(2.3.8), all of which assert that every continuous mapping of a
compact convex set into itself must have a fixed point. We end
with an example showing that it is not enough for the set to
be bounded, complete and convex.

2.1 The fixed point property

DeriNiTION 2.1.1 A topological space Z is said to possess
the fized point property if every continuous mapping of Z into &

“has a fixed point.

It is often possible to decide that a set has not got the fixed point
property, by finding a mapping without fixed points. (Consider,
for instance, the real line or the unit circle.)

An elementary argument shows that the unit interval [0, 1]
has the fixed point property. A fairly simple argument (see
§10.1) shows that the closed unit disc in the plane has the fixed
point property. In all other important cases the fixed point
propetty is rather hard to establish. ;

We observe first that the fixed point property is a topological
property.

TarorEM 2.1.2 If & is homeomorphic to % and Z has the
Jfized point property then % has the fixed point property.
Proof. An exercise. [

Using 2.1.2 and the results for the disc, one can show that various
plane sets in amoeboid shapes have the fixed point property. But
to deal with a spider’s shape with a two-dimensional body and
one-dimensional legs, or with a string of beads, one needs the
next theorem.

[9]



10 Fized points in compact convex sets

DerINITION 2.1.3 Wesay that X isareract of ¥ iff ¥ < ¥
and there exists a continuous mapping r of & into Z such that
r =1 on &. (We then call » a retraction mapping.)

ExaMPLE 2.1.4 A closed convex non-empty subset & of E* or
of a Hilbert space is a retract of any larger subset.

Sketch of proof. The required retraction mapping is obtained
by mapping each point onto the nearest point of Z. For details
see Bourbaki (1955, 5.1.4). ]

(The same result holds in Banach spaces but requires a different
proof: see Dugundji (1958, theorem 10.2). For the case where
%0+ &, see the proof of 4.2.4. below.)

THEOREM 2.1.5 If¥ has the fixed point property and X is a
retract of ¥ then Z has the fized point property.

Proof. Let r be a retraction map of % onto . If T is any
continuous map of Z into & then Tr is a continuous map
of % into Z. Since Tr maps % into %, there is a fixed point
- w, thus Trw = w. Clearly weZ so that rw=w and hence
Tw=w.

DErriNiTIiON 2.1.6 A topological space Z'is contractible (toa
point z, in &) if there exists a continuous function f(z, t) on
Z x [0, 1] to & such that f(»,0) = z and f(z, 1) = ,.

In order to obtain a fairly intuitive proof of Brouwer’s theorem
we will assume known the following facts about homology
groups. (In §2.2, we discuss some proofs of Brouwer’s theorem
which do not require homology theory; in Chapter 10 we refer to
some short proofs requiring more algebraic topology.) We write
S» for the n-sphere and B" for the closed n-ball.

REMINDER 2.1.7 With each complex & in Euclidean space
and each integer » > 1, we can associate a unique group H,(Z)
(the nth homology group with integral coefficients). Also

(i) H,(8*) = Z, the group of integers;

(i) if & is contractible, then H,(Z) = {e}, the trivial
group.



