LTE Small Cell Optimization

3GPP Evolution to Release 13

LTE SMALL CELL OPTIMIZATION

3GPP EVOLUTION TO RELEASE 13

Edited by

Harri Holma Antti Toskala Jussi Reunanen

This edition first published 2016 © 2016 John Wiley & Sons Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

A catalogue record for this book is available from the British Library.

ISBN: 9781118912577

Set in 10/12pt Times by Aptara Inc., New Delhi, India Printed and bound in Malaysia by Vivar Printing Sdn Bhd Cover image: © RossHelen/istockphoto

1 2016

LTE SMALL CELL OPTIMIZATION

Preface

We have witnessed a fast growth in mobile broadband capabilities during the last 10 years in terms of data rates, service availability, number of customers and data volumes. The launch of the first LTE network in December 2009 further boosted the growth of data rates and capacities. LTE turned out to be a success because of efficient performance and global economics of scale. The first LTE-Advanced network started in 2013, increasing the data rate to 300 Mbps by 2014, 450 Mbps in 2015 and soon to 1 Gbps. The number of LTE networks had grown globally to more than 460 by end 2015.

This book focuses on those solutions improving the practical LTE performance: small cells and network optimization. The small cells are driven by the need to increase network capacity and practical user data rates. The small cell deployment creates a number of new challenges for practical deployment ranging from interference management to low-cost products, site solutions and optimization. The network optimization targets to squeeze everything out of the LTE radio in terms of coverage, capacity and end-user performance.

Figure P.1 Contents of the book

Pico

xiv

Smartphones, tablets and laptops are the main use cases for LTE networks currently, but LTE radio will be the foundation for many new applications in the future. Internet of things, public safety, device-to-device communication, broadcast services and vehicle communication are a few examples that can take benefit of future LTE radio.

Preface

The contents of the book are summarized in Figure P.1. Chapters 1–3 provide an introduction to LTE in 3GPP Releases 8–13. The small cell-specific topics are discussed in Chapters 4–10 including 3GPP features, network architecture, products, interference management, optimization, practical learnings and unlicensed spectrum. The LTE optimization is presented in Chapters 11–16 including 3GPP evolution, performance, voice, inter-layer and smartphone optimization. Chapter 17 illustrates the outlook for further LTE evolution.

Acknowledgements

The editors would like to acknowledge the hard work of the contributors from Nokia Networks, T-Mobile USA and Videotron Canada: Rajeev Agrawal, Anand Bedekar, Mihai Enescu, Amitava Ghosh, Tero Henttonen, Wang Hua, Suresh Kalyanasundaram, Jari Lindholm, Timo Lunttila, Riku Luostari, Bishwarup Mondal, Laurent Noël, Brian Olsen, Klaus Pedersen, Karri Ranta-aho, Claudio Rosa, Jari Salo, Rafael Sanchez-Mejias, Mikko Simanainen, Beatriz Soret and Benny Vejlgaard.

The editors also would like to thank the following colleagues for their valuable comments and contributions: Petri Aalto, Yin-tat Peter Chiu, Bong Youl (Brian) Cho, Jeongho (Jackson) Cho, Jinho (Jared) Cho, Anthony Ho, Richa Gupta, Kari Hooli, Kyeongtaek Kim, Kimmo Kivilahti, Ekawit Komolpun, Wai Wah (Endy) Kong, Dinesh Kumar, Karri Kuoppamäki, Andrew Lai, Franck Laigle, Mads Lauridsen, Hyungyoup (Henry) Lee, Jasin (Jason) Lee, Sami Lehesaari, Jun Liu, Jarkko Lohtaja, Yi-Nan (Evan) Lu, Mark McDiarmid, Luis Maestro, Deshan Miao, Marko Monkkonen, Balamurali Natarajan, Nuttavut Sae-Jong, Shuji Sato, Changsong Sun, Wangkeun (David) Sun, Kirsi Teravainen, Jukka Virtanen, Eugene Visotsky and Veli Voipio.

The editors appreciate the fast and smooth editing process provided by Wiley publisher and especially Tiina Wigley and Mark Hammond.

The editors are grateful to their families, as well as the families of all the authors, for their patience during the late night writing and weekend editing sessions.

The editors and authors welcome any comments and suggestions for improvements or changes that could be implemented in forthcoming editions of this book. The feedback may be addressed to: harri.holma@nokia.com, antti.toskala@nokia.com and jussi.reunanen@nokia.com

List of Abbreviations

3D Three Dimensional

3GPP Third Generation Partnership Project

AAS Active Antenna System Almost Blank Subframe ABS AC Alternating Current ACK Acknowledgement AIR Antenna Integrated Radio AM Acknowledge Mode Adaptive Multirate

ANDSF Access Network Discovery and Selection Function

Automatic Neighbour Relations ANR

APP Applications

AMR

APT Average Power Tracking

Absolute Radio Frequency Channel Number ARFCN

Automatic Repeat Request ARO

AS Application Server

ASA Authorized Shared Access AWS Advanced Wireless Spectrum

BBU Baseband Unit **BCCH** Broadcast Channel BLER Block Error Rate

BSIC Base Station Identity Code BSR Buffer Status Report

BTS Base Station

C-RNTI Cell Radio Network Temporary Identifier

CA Carrier Aggregation CAPEX Capital Expenditure

CAT Category

Component Carrier CC

CCA Clear Channel Assessment CCE Control Channel Element CDF Cumulative Density Function CDMA Code Division Multiple Access cDRX Connected Discontinuous Reception CoMP Coordinated Multipoint

CPRI Common Public Radio Interface

CN Core Network

CPICH Common Pilot Channel
CPU Central Processing Unit
CQI Channel Quality Indicator
CRC Cyclic Redundancy Check

CRAN Centralized Radio Access Network

CRS Common Reference Signals

CRS-IC Common Reference Signal interference cancellation

CS Circuit Switched
CS Cell Selection
CSCF Call Session Control Function

CSFB Circuit Switched Fallback
CSG Closed Subscriber Group
CSI Channel State Information

CSI-RS Channel State Information Reference Signals

CSMO Circuit Switched Mobile Originated
CSMT Circuit Switched Mobile Terminated

CSSR Call Setup Success Rate

CWIC Code Word Interference Cancellation
CWDM Coarse Wavelength Division Multiplexing

D2D Device-to-Device

DAS Distributed Antenna System

DC Direct Current
DC Dual Connectivity

DCCH Dedicated Control Channel

DCH Dedicated Channel

DCI Downlink Control Information

DCR Drop Call Rate

DFS Dynamic Frequency Selection

DMCR Deferred Measurement Control Reading

DMRS Demodulation Reference Signals

DMTC Discovery Measurement Timing Configuration

DPS Dynamic Point Selection
DRB Data Radio Bearer

DRS Discovery Reference Signals
DRX Discontinuous Reception
DSL Digital Subscriber Line
DTX Discontinuous Transmission

DU Digital Unit

ECGI E-UTRAN Cell Global Identifier eCoMP Enhanced Coordinated Multipoint

EDPCCH Enhanced Downlink Physical Control Channel

EFR Enhanced Full Rate

eICIC Enhanced Inter-Cell Interference Coordination

List of Abbrivitions xix

eMBMS Enhanced Multimedia Broadcast Multicast Solution

EPA Enhanced Pedestrian A EPC Evolved Packet Core

EPRE Energy Per Resource Element eRAB Enhanced Radio Access Bearer ESR Extended Service Request

ET Envelope Tracking
EVM Error Vector Magnitude
EVS Enhanced Voice Services
FACH Forward Access Channel

FD-LTE Frequency Division Long Term Evolution

FDD Frequency Division Duplex

feICIC Further Enhanced Inter-Cell Interference Coordination

FFT Fast Fourier Transformation FSS Frequency Selective Scheduling

FTP File Transfer Protocol
GBR Guaranteed Bit Rate
GCID Global Cell Identity

GERAN GSM EDGE Radio Access Network
GPON Gigabit Passive Optical Network
GPS Global Positioning System

GS Gain Switching

GSM Global System for Mobile Communications

HARQ Hybrid Automatic Repeat Request

HD High Definition

HetNet Heterogeneous Network HFC Hybrid Fibre Coaxial

HO Handover

HOF Handover Failure

HPM High-Performance Mobile HSPA High-Speed Packet Access

HSDPA High-Speed Downlink Packet Access
HSUPA High-Speed Uplink Packet Access
HTTP Hypertext Transfer Protocol
IAS Integrated Antenna System
IC Interference Cancellation

ICIC Inter-Cell Interference Coordination IRC Interference Rejection Combining

IEEE Institute of Electrical and Electronics Engineers

IM Instant Messaging

IMEI International Mobile Station Equipment Identity

IMPEX Implementation Expenditure

IMS Internet Protocol Multimedia Subsystem
IMT International Mobile Telecommunication

IoT Internet-of-Things
IQ In-phase and Quadrature

xx List of Abbrivitions

IRC Interference Rejection Combining

IRU Indoor Radio Unit
ISD Inter Site Distance
IT Information Technology

ITU-R International Telecommunications Union – Radiocommunications Sector

JP Joint Processing JT Joint Transmission

KPI Key Performance Indicator
LAA Licensed Assisted Access
LAN Local Area Network
LAU Location Area Update
LBT Listen-Before-Talk

LMMSE-IRC Linear Minimum Mean Squared Error Interference Rejection Combining

LOS Line of Sight LP Low Power

LTE Long-Term Evolution
LTE-A LTE-Advanced
LU Location Update
MAC Medium Access Control

MBSFN Multicast Broadcast Single Frequency Network

MDT Minimization of Drive Testing

MeNB Macro eNodeB
MeNodeB Master eNodeB
M2M Machine-to-Machine
MCL Minimum Coupling Loss
MCS Modulation and Coding Scheme

ML Maximum Likelihood
MLB Mobility Load Balancing
MIMO Multiple Input Multiple Output

MME Mobility Management Entity
MMSE Minimum Mean Square Error

MOS Mean Opinion Score
MRC Maximal Ratio Combining

MRO Mobility Robustness Optimization
MSS Mobile Switching centre Server
MTC Machine Type Communications

MTC Mobile Terminating Call

MTRF Mobile Terminating Roaming Forwarding
MTRR Mobile Terminating Roaming Retry

M2M Machine-to-Machine

NAICS Network Assisted Interference Cancellation and Suppression

NAS Non-access Stratum

NB Narrowband NLOS Non-line of Sight

NOMA Non-orthogonal Multiple Access

OBSAI Open Base Station Architecture Initiative

List of Abbrivitions xxi

0&M Operations and Maintenance

Orthogonal Frequency Division Multiplexing **OFDM** Orthogonal Frequency Division Multiple Access **OFDMA**

OPEX Operating Expenditure OS Operating System OSG Open Subscriber Group

OTT Over the Top Power Amplifier PA

Physical Broadcast Channel **PBCH**

PCell Primary Cell

Physical Control Format Indicator Channel **PCFICH**

PCH Paging Channel PCI Physical Cell Identity

PDCCH Physical Downlink Control Channel PDCP Packet Data Convergence Protocol

Power Density Function PDF

Physical Downlink Shared Channel PDSCH

Protocol Data Unit PDU

PESO Perceptual Evaluation of Speech PHR Power Headroom Report PWG

Packet Data Network Gateway PLMN Public Land Mobile Network PMI Precoding Matrix Indicator

PoE Power over Ethernet

POLOA Perceptual Objective Listening Quality

PON Passive Optical Network PRB Physical Resource Block

PSCCH Physical Sidelink Control Channel **PSBCH** Physical Sidelink Broadcast Channel **PSCCH** Physical Sidelink Control Channel

PSD Power Spectral Density

PSDCH Physical Sidelink Discovery Channel

Power-Saving Mode **PSM**

PSSCH Physical Sidelink-Shared Channel **PUCCH** Physical Uplink-Control Channel PUSCH Physical Uplink-Shared Channel

pRRU Pico Remote Radio Unit

OAM Quadrature Amplitude Modulation OCI Quality of Service Class Identifier

OoS Quality of Service

RA-RNTI Random Access Radio Network Temporary Identifier

RACH Random Access Channel RAN Radio Access Network RAO Random Access Opportunity Radio Access Technology RAT

RB Radio Bearer RCS Rich Call Services
RE Range Extension

RET Remote Electrical Tilting

RF Radio Frequency

RHUB Remote Radio Unit Hub

RI Rank Indicator

RIM Radio Information Management

RLC Radio Link Control

RNC Radio Network Controller
RRH Remote Radio Head
RAT Radio Access Technology
RLF Radio Link Failure

RLM Radio Link Monitoring
RNC Radio Network Controller

RNTP Relative Narrow-Band Transmit Power

ROHC Robust Header Compression

RoT Rise over Thermal
RRC Radio Resource Control
RRM Radio Resource Management

RS Reference Signal

RSCP Received Signal Code Power
RSRP Reference Signal Received Power
RSRQ Reference Signal Received Quality
RSSI Received Signal Strength Indication

RX Reception

SC-FDMA Single Carrier Frequency Division Multiple Access

SDU Service Data Unit S-GW Serving Gateway

S-TMSI SAE Temporary Mobile Subscriber Identity

S1AP S1 Application Protocol

SeNB Small eNodeB SeNodeB Secondary eNodeB SCell Secondary Cell

SCS Short Control Signalling SFN Single Frequency Network

SGW Serving Gateway

SI-RNTI System Information Radio Network Temporary Identifier

SIB System Information Block

SINR Signal to Interference and Noise Ratio

SIP Session Initiation Protocol SISO Single Input Single Output

SLIC Symbol Level Interference Cancellation

SMS Short Message Service
SNR Signal-to-Noise Ratio
SON Self-Organizing Network
SPS Semi Persistent Scheduling

List of Abbrivitions xxiii

SR Scheduling Request
SRB Signalling Radio Bearer
SRS Sounding Reference Signals

SRVCC Single Radio Voice Call Continuity

SU Single User
SWB Super Wideband
TA Timing Advance
TAU Tracking Area Update
TBS Transport Block Size

TC Test Case

TCO Total Cost of Ownership
TCP Transmission Control Protocol

TDD Time Division Duplex

TD-LTE Time Division Long-Term Evolution

TETRA Terrestrial Trunked Radio
TM Transmission Mode

TPC Transmission Power Control
TTI Transmission Time Interval

TTT Time to Trigger TX Transmission

UCI Uplink Control Information
UDN Ultra Dense Network
UDP User Datagram Protocol

UE User Equipment

UPS Uninterruptible Power Supply

USB Universal Serial Bus

USIM Universal Subscriber Identity Module
UTRA Universal Terrestrial Radio Access

UTRAN Universal Terrestrial Radio Access Network

VAD Voice Activity Detection

VDSL Very High Bit Rate Digital Subscriber Line

VoLTE Voice over LTE

V2X Vehicle to Infrastructure V2V Vehicle to Vehicle

WB Wideband

WCDMA Wideband Code Division Multiple Access

WDM Wavelength Division Multiplexing

Wi-Fi Wireless Fidelity

WLAN Wireless Local Area Network X2AP X2 Application Protocol

Contents

Preface Acknowledgements List of Abbreviations		xiii
		XV
		xvii
1	Introduction Harri Holma	1
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	Introduction LTE Global Deployments and Devices Mobile Data Traffic Growth LTE Technology Evolution LTE Spectrum Small Cell Deployments Network Optimization LTE Evolution Beyond Release 13 Summary References	1 2 3 4 5 6 7 8
2	LTE and LTE Advanced in Releases 8–11 Antti Toskala	11
2.1 2.2	Introduction Releases 8 and 9 LTE 2.2.1 Releases 8 and 9 Physical Layer 2.2.2 LTE Architecture 2.2.3 LTE Radio Protocols	11 11 12 13
2.3	LTE Advanced in Releases 10 and 11 2.3.1 Carrier Aggregation 2.3.2 Multiple Input Multiple Output Enhancements 2.3.3 HetNet Enhanced Inter-cell Interference Coordination 2.3.4 Coordinated Multipoint Transmission UE Capability in Releases 8–11	19 19 23 23 25 26
2.5	Conclusions References	28

3	LTE-Advanced Evolution in Releases 12–13 Antti Toskala	29
3.1	Introduction	29
3.2	Machine-Type Communications	29
3.3	Enhanced CoMP	34
3.4	FDD-TDD Carrier Aggregation	35
3.5	WLAN-Radio Interworking	37
3.6	Device-to-Device Communication with LTE	39
3.7	Single Cell Point to Multipoint Transmission	41
3.8	Release 12 UE Capabilities	42
3.9	Conclusions	42
	References	43
4	Small Cell Enhancements in Release 12/13	45
	Antti Toskala, Timo Lunttila, Tero Henttonen and Jari Lindholm	
4.1	Introduction	45
4.2	Small Cell and Dual Connectivity Principles	45
4.3	Dual Connectivity Architecture Principle	46
4.4	Dual Connectivity Protocol Impacts	47
4.5	Dual Connectivity Physical Layer Impacts and Radio Link Monitoring	49
4.6	Other Small Cell Physical Layer Enhancement	53
	4.6.1 256QAM for LTE Downlink	53
	4.6.2 Small Cell ON/OFF Switching and Enhanced Discovery	53
	4.6.3 Power Saving with Small Cell ON/OFF	56
	4.6.4 Over the Air Synchronization Between eNodeBs	56
4.7	Release 13 Enhancements	56
4.8	Conclusions	57
	References	57
5	Small Cell Deployment Options	59
	Harri Holma and Benny Vejlgaard	
5.1	Introduction	59
5.2	Small Cell Motivation	60
5.3	Network Architecture Options	60
5.4	Frequency Usage	64
5.5	Selection of Small Cell Location	65
5.6	Indoor Small Cells	67
	5.6.1 Distributed Antenna Systems	67
	5.6.2 Wi-Fi and Femto Cells	68
	5.6.3 Femto Cell Architecture	70
	5.6.4 Recommendations	72
5.7	Cost Aspects	72
	5.7.1 Macro Network Extension	73
	5.7.2 Outdoor Small Cells	73

	5.7.3 Outdoor Pico Cluster	73
	5.7.4 Indoor Offloading	74
5.8	Summary	74
	References	75
6	Small Cell Products	77
	Harri Holma and Mikko Simanainen	
6.1	Introduction	77
6.2	3GPP Base Station Categories	78
6.3	Micro Base Stations	7.8
6.4	Pico Base Stations	80
6.5	Femtocells	83
6.6	Low-Power Remote Radio Heads	84
	6.6.1 Alternative Remote Radio Head Designs for Indoor Use	86
6.7	Distributed Antenna Systems	87
6.8	Wi-Fi Integration	87
6.9	Wireless Backhaul Products	89
6.10	Summary	90
	Reference	90
7	Small Cell Interference Management	91
	Rajeev Agrawal, Anand Bedekar, Harri Holma, Suresh Kalyanasundaram,	
	Klaus Pedersen and Beatriz Soret	
7.1	Introduction	91
7.2	Packet Scheduling Solutions	93
7.3	Enhanced Inter-cell Interference Coordination	97
	7.3.1 Concept Description	97
	7.3.2 Performance and Algorithms	101
7.4	Enhanced Coordinated Multipoint (eCoMP)	110
7.5	Coordinated Multipoint (CoMP)	114
7.6	Summary	119
	References	120
8	Small Cell Optimization	121
	Harri Holma, Klaus Pedersen, Claudio Rosa, Anand Bedekar and Hua Wang	
8.1	Introduction	121
8.2	HetNet Mobility Optimization	122
8.3	Inter-site Carrier Aggregation with Dual Connectivity	126
	8.3.1 User Data Rates with Inter-site Carrier Aggregation	126
	8.3.2 Mobility with Dual Connectivity	131
8.4	Ultra Dense Network Interference Management	135
	8.4.1 Ultra Dense Network Characteristics	135
	8.4.2 Proactive Time-Domain Inter-cell Interference Coordination	136
	8.4.3 Reactive Carrier-Based Inter-cell Interference Coordination	138