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PREFACE

As pointed out more than a decade ago by J. D. Roberts in his
concise and valuable introduction to the simple LCAO method,! any
organic chemist with no more than high school algebra can make
useful calculations of semiempirical electronic energies and electron
distributions for typical organic systems of interest. At that time
Roberts stated, ‘‘there is no excuse for a modern organic chemist
not to be able to use the LCAO method.”” With the passage of time,
which has led to significant advances in our understanding of struc-
ture and reactivity, and particularly because of the development of
powerful methods based on the principle of conservation of orbital
symmetry, there is even less excuse today for such an inability on
the part of organic chemists. The original development and con-
tinued use of the simple Hiickel Molecular Orbital (HMO) method
has provided organic chemists with a great many results that, al-
though crude and approximate, have provided many significant
insights into the properties and reactivities of organic molecules con-
taining m-electron systems and increased our theoretical understand-
ing of the nature of chemical bonding. Simple molecular orbital
approaches of the HMO type have probably been more successful
than many more advanced and sophisticated theoretical approaches
in providing organic chemists with real predictions (and not ex post
facto explanations or rationalizations of well-known properties)
concerning the stabilities and reactivities of organic systems. One
has only to consider the outstanding successes of Hiickel’s (4n + 2)
rule and of the Woodward—Hoffman rules in this regard. It is also
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Preface 2 xi

clear that the simple HMO technique has given us a great deal of
information and results, both of a qualitative and a semiquantitative
nature, that could not have been obtained by use of valence-bond
(resonance) theory. It is probably fair to say that the simple Hiickel
approach seldom, if ever, gives results or suggestions that are
clearly at variance with experimental evidence.

This book is intended to be as simple, descriptive, and non-
mathematical an introduction as possible to Hiickel molecular orbi-
tal theory and its application to organic chemistry. It is suggested
that the text could provide the basis for a one-semester or one-term
course in theoretical organic chemistry,suitable either for juniorsor
seniors. The book is not intended to give an exhaustive or com-
prehensive treatment of the subject, but is meant to provide a
simpler and more basic text that would complement available and
more advanced works such as Streitwieser's ‘‘Molecular Orbital
Theory for Organic Chemists’'? and Woodward and Hoffmanns”
“‘The Conservation of Orbital Symmetry.’® Each of these is an
excellent and comprehensive treatment, replete with examples and
illustrations from the current literature. Thus, speciiic examples
have been included in the present work only to illustrate particular
points. The reader is referred to these and other more comprehen-

sive treatments for examples of the widespread application of simple

molecular orbital concepts.,

The emphasis in the present text is on basic concepts and methods.
It is the author's feeling that many organic chemistry students, both
undergraduate and graduate, frequently apply important ideas and
approaches such as the Woodward-Hoffmann rules without a suf-
ficiently sound understanding of their theoretical basis, Similarly,
many students go on to make calculations of more sophisticated types
such as the various CNDO methods or even the LCAO-SCF typeina
very mechanical way, without ever having developed a fec! ng for the
quantum mechanical concepts involved, or equally importantly, the
naiure of the approximations and limitations inherent in these
methods.

One advantage of the simple LCAO approaches described in this
book is that they can at the same time provide practicing organic
students with a basic understanding of quantum mechanical ideas
that they can profitably apply in many areas of experimental organic
chemistry, and also provide a basis for further theoretical calculations
if they become more deeply interested in the theoretical aspects of
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the subject. The mathematics involved in these simple approaches
need deter no organic student; in fact the mathematical simplicity of
the HMO approach is one of its great advantages, in that basic
quantum mechanical ideas are not obscured in a welter of complex
equations and integrals. Numerous problems are included at the end
of most chapters. These should be solved as they are approached in
the text. (In many cases the answers are very easy to obtain and
verify, and in other cases detailed numerical solutions are readily
available in standard reference works.) In addition, supplementary
texts and references are included at the end of every chapter. (No
attempt has been made to include all pertinent references.) Those
works indicated with an asterisk are strongly recommended as
supplementary reading. '

I hope that any organic students ‘vho work their way through this
text and the problems will derive as much enjoyment from it as I
have in writing it.

Finally I would like to thank Miss Helen Ohorodnyk, Professor
I. G. Csizmadia, and Professor W. Forst for reading and commenting
on various sections of the text and Mrs. Sue McClelland for her
patience with the typing.
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INTRODUCTION

The problem of what constitutes the electronic structurg-of complex
molecules is of fundamental importance to most of chemistry, and
particularly to organic chemistry. since all of the experimental work
in this field involves molecules and not atoms, and usually fairly large
molecules. To obtain a satisfactory theoretical understanding of the
molecular structure and properties of organic systems we must ulti-
mately turn to quantum mechanics to answer questions concerning
thermodynamic stabilities, spectroscopic properties, and chemical re-
activities. These questions all resolve themselves finally into the ques-
tion of the nature of the chemical bonding or electron distribution in
the organic molecules. However, the fundamental wave equations that
could be applied to the types of covalent bonding normally found in
these molecules are impossible to solve exactly for any multibody prob-
lem such as«that involved in a real molecular system. Even for the
simplest molecular species H, ", which nas only two nuclei and one
electron, it is necessary to make a simplifying assumption (the Born
Oppenheimer approximation)' to arrive at any quaritum mechanical
solution. For more complex molecules, the situation becomes increas-
ingly more difficult, and further simplifying assumptions or approxi-
mations must necessarily be made if we are to obtain'even very



2 I Introduction

approximate answers to questions about molecular electronic struc-
tures and energies. This has led to the development of various quantum
mechanical methods, whose results, albeit crude and approximate,
have shed significant light on the nature of chemical bondmg and
reactivity, particularly in organic chemistry.

. The simplest and most approximate of these approaches has come
to be known as the Hiickel molecular orbital ( HMO) method,? on which
most of this book is based. This approach, despite its theoretical
naiveté, has several important advantages, particularly for practicing
organic chemists. First, because of its simplicity, it is easy to under-
stand and apply, even‘to fairly complex systems. Second, it does not
differ fundamentally from other more sophisticated and less inexact
methods, and hence is very useful for developing a basic understanding
of and feeling for quantum mechanical concepts, treatments, and re-
sults in a way that would not be possible using mathematically more
sophisticated methods. Third, and perhaps most important, the results
of this approximate theoretical treatment of organic molecules have
contributed very significantly to the understanding of organic chemists,
particularly in the last ten or fifteen years. As will be shown later, the
results of HMO calculations have helped to correlate and explain a
wide range of both physical and chemical properties, and have alson
recent years helped to provide very significant predictive rules con-
cerning the course of many organic reactions.

In order to provide a satisfactory conceptual basis for such approxi-
mate quantum mechanical methods, and to give some understanding
of the necessity for and the nature of the simplifying assumptions and
approximations that must be made, the remainder of this chapter will
deal with basic concepts and definitions that underly all quantum
chemical calculations.

1.1 THE BASIC POSTULATES OF QUANTUM MECHANICS

The quantum mechanical equations that are used to calculate molec-
ular properties are based on a set of fundamental statements or pos-
tulates. These concern atomic and molecular properties and hence are
outside everyday experience. They cannot be derived a priori or justi-
fied in any absolute sense, and the reader is thus asked at first to take
these statements purely on faith. However, the main point is that these
postulates are justified if and only if they are able to explain and
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correlate experimentally observed data, to make predictions, and to be
generally applicable to the chemical systems in which we are interested.

This set of postulates will serve to introduce the basic concepts and
definitions we make frequent use of, either explicitly or implicitly, in all
of the calculations and discussions in the rest of this book.

Postulate I (a) Any state of a.system of n particles (such as a mole-
cule) is described as fully as possible by a function ¥, which is a func-
tion only of the spatial coordinates of the particles and the time,
that is,

¥(919293:91'92'45 - - - ,41"42"43", 1)

where ¢,4,q; are the coordinates of the first particle, and so forth for
each of the n particles.

(b) If we know that such a state is described by a particular ‘P,
then the quantity YW*dr," where dr is a volume element based on
generalized spatial coordinates, gives the probability of finding g, for
the first particle between ¢, and (q, + dq,), g, between g, and
(g2 + dq,), and so on for each of the n particles at a specific time .

Part (a) of this postulate tells us that all the information we need
about the properties of any molecular system is contained in seme
mathematical function ¥, a wave function, which is a function only of
the spatial coordinates of the system and the time. If this ¥ includes ¢
explicitly, it is called a time-dependent wave function. However, if the
observable properties we are interested in do not change with time,
the system is said to be in a stationary state. In this case, the time de-
pendence can be separated out, and we are left with a time-independent
or stationary-state wave function ¥(q,4,4s, - - - ,4,"92"q;"). Since most
properties of interest to organic chemists—such as energies, electron
densities, dipole moments, bond orders, and bond lengths—are time
independent (or time averaged, as far as experimental data are con- ‘
cerned), we will need to deal only with stationary states and their wave
functions. _

Part (b) of the postulate gives us a physical interpretation of ¥ in
terms of its square, or more properly in terms of its WW¥* product.
However, in order that the ¥ are in accord with physical reality, these

TIf ¥ is the wave function, ‘P* is its complex conjugate. For example, if ¥ = f + ig,
¥* = [ — ig. The approximate wave functions used in this book do not contain complex
parts, thus in general Y /* reduces to 2. .
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functions are subject to certain reasonable restrictions:

(i) ¥ is everywhere finite, that is, the particles whose behavior ¥
describes must be bound to a nucleus or an assemblage of nuclei.

(1) W is single-valued; that is, each particle in the system must be
in one place at a time only.

(iii) ¥? or WY¥* must be an integrable function.

These restrictions arise mainly because W2 dr is a probability dis-
tribution function, and therefore its integral over a given region of space
can have only one value under a given set of conditions, and this value
must be finite. A special case of (ii1) is when

jo‘ Y2 dr = |

where ja‘ is taken to mean integration over the limits of all coordinates
over all space. When this is true, the function W is said to be normalized.
Thus the probability of finding each particle in some region of space, or
the total probability of finding the system in some configuration or
other, must be unity. All wave functions dealt with in this book will be
normalized by multiplying them where necessary by an appropriate
normalization factor.

Postulate I For every observable property of a system that is de-
scribed by some W, there exists a linear Hermitian operator. The
physical properties we are interested in can be obtained from this
operator and the wave function that describes the system.

An operator O is linear if
O(f +9)=0f+0g and O(af)=alf

where f and g are functions and a is a constant. Frequent use w'.l be
made of the linearity property of certain operators in handling .uan-
tum mechanical equations.

The Hermitian property of the operators we will use ensures that we
always obtain real solutions, since Hermitian operators are defined by
the relation

$*OD dr = f DO*Y* dr
all all
space space

where ¥ and @ are any two functions that satisfy the above conditions
of acceptability and O is the operator of interest (usually the Hamilto-
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nian or total energy operator). Since we will only use real ¥ (or @),
this means that in any quantum mechanical integral of the form

[wow,d

the order of multiplication and operation with respect to '¥; and ¥; is
immaterial, and the value of the integral will always be real. We will
also make frequent use of this property of the operators of interest. It
is sufficient for the purposes of this book to know that such a class of
operators exists and that all operators to be used (particularly Hamil-
tonian operators) belong to this class.

Postulate I1I - To cobtain the operator asseciated with a given observ-
able. simply take the classical expression for that observable in terms
of the coordinates, momenta, and time and make the following
replacements:

(i) Each component of momentum p, is replaced by the differential
operator —ihd/dq, where g is a generalized coordinate, i = —1,and
h = h/2n. (Note that these operators are both linear and Hermitian,
whereas d/dq alone is not Hermitian.)

(i) Timerand all spatial coordinates g; are left formally unchanged,
and the corresponding operators are simply multiplication operators.

Although other operators will be considered later on, the operator
that is of principal interest is the one associated with the energy values
for the system under consideration. For example, the classical expres-
sion for the kinetic energy of a single particle, such as an electron,
using Cartesian coordinates is

. 1 2 2 2
T—S’;;(px +py +P:)

where p, is the momentum component along the g direction. Using
step (i) this becomes the kinetic energy operator

» 1 0\ _0\? A
T“z'm[(""a) *(“"5) *(“’*éz)]

hz “:l 82 (')2 hz
= = 2
= (Q +3= + 7321 T "% v

2m

where V2 is the Laplacian operator and m is the mass of the particle
at rest.
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The potential energy V is a function only of the spatial coordinates
of the particle, and contains physical constants such as the electronic
and nuclear charge. For example, the classical expression for the poten-
tial energy of a single electron i of charge e in the field of a nucleus n of
charge Ze is given by

V=—Ze*r,

where r,; is the distance between the electron and the nucleus, which
can be expressed in terms of coordinates x,y,z. This expression
remains unchanged in quantum mechanics and hence V(x,y,z)—
V(x, y, z). Hence the operation involved under ¥ is simply multiplica-
tion of some function by V.

_The classical expression for the total energy Eis Hamllton s function

E=T+V

and thus the associated quantum mechanical operator is
P N h? .
”=T+V ="—§—”—IV2+V(X,}’,Z)

This is the Hamiltonian or total energy operator  for the system.
(Examples of other Hamiltonian operators are given in Section 1.2.)

Postulate IV If P is an operator corresponding to some physical
observable p, and there is a set of states each described by a function
¥, which is an eigenfunction of P, then a series of measurements of
the physical quantity corresponding to p would always give the same
result p, for a given state s, which would be the eigenvalue of the
operator P, where

P¥Y,=p\¥
such that p, is a real number.

For example, measurements of the energy of a series of identical
systems in a state described by some wave function ¥, that is an eigen-
function of the total energy operator 3 will always give the same result
E,. Thus .

#Y,=ENVY,

and the eigenvalue is always exactly E,. Therefore the problem of com-
puting allowed energy states of a given system is reduced to the prob-
lem of finding the functions ¥, and energy values E, that satisfy this



