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PREFACE

Soviet sputnik ushered in the space era in Oct. 1957. This launch occurred
almost 70 years ago and nonetheless interest in the creation and use of space
technics continues unabated. New challenges formulate new ideas, which be
implemented in the new space programs. Currently, global unexpected,
including, and environmental concerns associated with big population of
nonfunctional and abandoned satellites, spent upper stages and fragments.
Each new space program is unique and requires new technologies and
careful research based on mathematical modeling. Results of the mathemat-
ical simulation and the analytical solutions allow a better understanding of
the phenomenon and processes of spacecraft functioning, and choose the
conceptual design of future aerospace systems. Most of the space systems
can be considered as a system of rigid bodies, and in some cases, with
additional elastic and viscoelastic elements, and with fuel residuals.

The purpose of the book is to show the nature of the phenomena and to
explain features of the behavior of space objects, as a system of rigid bodies,
based on the knowledge of classical mechanics, regular and chaotic dynam-
ics. The author tried to show relatively simple ways of constructing
mathematical models and analytical solutions describing the behavior of very
complex mechanical systems. The book contains many analytical and
approximate analytical solutions that help to understand the nature of the
studied phenomena. It is based on the recent papers of the author in
international journals, which have been reviewed by leading scientists of
the world, thus the results can be trusted. This book covers modern prob-
lems of spaceflight mechanics, such as attitude dynamics of reentry capsule in
Earth’s atmosphere, dynamics and control of coaxial satellite gyrostats,
dynamics and control of a tether-assisted return mission, removal of large
space debris by a tether tow.

The author hopes that this book will be helpful for a wide range of sci-
entists, engineers, graduate students, university teachers, and students in the
fields of mechanics, and aerospace science. Graduate students and researchers
find in the book the new results of studies in a wide range of aerospace
applications, and they can also use it as tool for obtaining new knowledge.
Aerospace engineers can get engineering approaches to the development of
new space systems. University teachers can use the text for preparation of
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new sections in the course of the mechanics of space flight and students will
have updated courses of lectures.

The book consists of six chapters. It begins from the necessary funda-
mentals. Chapter 1 covers basic aspects of mathematics and mechanics,
including elliptic functions, rigid body kinematics, Serret-Andoyer canon-
ical variables, and Poincare and Melnikov’s methods. Chapter 2 explores
uncontrolled descent of the reentry capsule into an atmosphere by the aver-
aging method and methods of chaotic dynamics. Chapter 3 deals with atti-
tude motion of free dual-spin satellite gyrostats. Exact analytical solutions of
the undisturbed motion are presented for all possible ratios of inertia
moments of the gyrostats. Chapter 4 is devoted to a tether-assisted reentry
capsule return mission. Chapter 5 considers a problem of removal of large
space debris by a space transportation system, which is composed of a space
tug connected by a tether with the space debris. Chapter 6 contains several
separate issues of space flight mechanics, which are of great practical interest,
but were not included in previous chapters: the problem of the gravitational
stabilization of the satellite by a controlled motion of a point mass on board,
dynamics of a space vehicle during retrorocket engine operating, and resto-
ration of attitude motion of satellite using small numbers of telemetry
measurements.

I would like to acknowledge brilliant Russian scientist in the field of
Aeronautics and Astronautics Professor Vasiliy Yaroshevskiy for special
attention and support in the beginning of my academic career, and my first
research supervisor Professor Vitali Belokonov. I would like to thank all
of my friends and colleagues who helped me make my researches, in partic-
ular Dr. Viktor Boyko, Professor Ivan Timbay, Dr. Anton Doroshin,
Dr. Alexander Ledkov, and Dr. Vadim Yudintsev. Especially, I would like
to express my appreciation to Dr. Alexander Ledkov and Dr. Vadim
Yudintsev for their help in the work on this manuscript. I also thank Elsevier
for their support and publication of this book, and Samara National
Research University in the person of Rector Evgeniy Shakhmatov and
President Viktor Soifer for productive environment and the opportunity
to work with interesting people.

This book contains results of researches that has been supported in part
by the Russian Science Foundation (project no. 16-19-10158, Chapter 5),
the Russian Foundation for Basic Research (project no. 15-01-01456-A),
and the Ministry Education and Science of Russia (Contract No.
9.540.2014/K).

Vladimir S. Aslanov
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CHAPTER 1

Mathematical Mechanical
Preliminaries

1.1 MATHEMATICS

This section contains basic information on elliptic integrals and elliptical func-
tions with examples of their use. Detailed information about elliptic integrals,
elliptical functions, and their applications can be found in Refs. [1-6].

1.1.1 Elliptic Integrals

An elliptic integral is an integral that can be written in the form:

JR(x,W)d.x (1.1)

where R(x,y) is a rational function and P(x) is a polynomial of the third or
fourth degree in x.
Let us consider the following integral:

o

dx

u=Flo.k)= Jﬁ (.3

0

which is called incomplete integral of the first kind. The incomplete elliptic

integral is a function of angle @ and the elliptical modulus k(0 <k <1).
When the amplitude ¢ = /2, the incomplete integral of the first kind is

said to be complete elliptic integral of the first kind and is denoted as K(k):

x/2

K(k) = F(x/2,k) = J

0

dx

—_— 1.3
V1 —Fk*sin?x (1-3)

Definite integral

@

E(e, k)=J\/1—k35in3x dx (1.4)
0

Rigid Body Dynamics for Space Applications Copyright © 2017 Elsevier Ltd.
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2 Rigid Body Dynamics for Space Applications

is called incomplete integral of the second kind, and as the integral of the first
kind, it also has complete form when ¢ =7/2

w/2
E(k)= J V1 —k?sin?x dx (1.5)
0
Incomplete elliptic integral of the third kind is
T a6
(@, n, k) = _ 1.6
(.1 ) Jl—nstH 1 —k?sin?6 (1.6)
0
Complete elliptic integral of the third kind 1s
x/2
do
I(n, k)= J 1.7
(1. ) ) (1 —nsin?0)v1—k*sin?0 e
where n is called the characteristic.
The elliptic integrals satisty the following relations:
F(—g.k) =—F(¢. k) (1.8)
F(nrtq@,k) =2nK(k) £ F(p, k) (1.9)
E(—g.k) = —E(p. k) (1.10)
E(nm+ @, k) = 2uE(k) = E(g, k) (1.11)

For small K>« 1, complete elliptic integrals can be expanded into series as
follows:

—~13 27
& _1+Z[f” ] (1.12)

%E(k)zl—i l:(zﬂ—l)”:|2 k?‘” (113)

where 2n—1)1=1-3-5...(2n—1).
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1.1.2 Elliptic Functions

The inverse functions of incomplete elliptic integral of the first kind form the
elliptical functions. The amplitude function is defined as (see Eq. 1.2)

@ =amu (1.14)
The elliptical sine function sn(u, k) is given by
sn(u, k) = sin ¢ = sin (amu) (1.15)
The elliptical cosine function cn(u, k) is given by
cn(u, k) = cos @ = cos (amu) (1.16)

Elliptic functions sn(u,k) and cn(u, k) have period 4K(k) for the
argument . Delta amplitude function dn(u, k) is given by the expression:

d
dn(u, k) :d—q): V1 —k2sin2p = /1 — k2sn2(u, k) (1.17)

u

This function has period 2K(k).
The elliptic functions satisty the following relations:

cn?u+sn’u=1 (1.18)

dn’u + k*sn’u=1 (1.19)

The derivatives of the elliptic functions are given by the following
expressions:

damu
2 — dnu (1.20)
du
—snu=cnu-dnu (1.21)
"
d
—cnu=—snu-dnu (1.22)
du
d >
—dnu=—k"snu-cnu (1.23)
du

Hyperbolic and trigonometric functions are the special cases of elliptical
functions. For k=1, Eq. (1.2) has the form:
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that means

1—sing
1 —sin’¢

Solving Eq. (1.25) for sing, we get

) €[4_1
snu = sin @ =
e+ 1

= tanh u

Therefore, taking into account Eq. (1.18), we obtain

1
cnu=v1—sn?u=v1—tanh?y=—
chu
Taking into account Eq. (1.19) for k=1, we get
= il
dnu=v1—sn2u=v1— tanh?u=—
chu
For k=0,
@ 2 @
1 — k*sin260
0
So we get
sny = sin ¢

and

cnu=cosu, dnu=1

(1.24)

(1.25)

(1.27)

(1.28)

(1.29)

(1.30)

Thus, when k=0, elliptical functions degenerate to trigonometric

functions.

Elliptic integrals and elliptical functions are used in mechanics and engi-
neering. For example, they used to describe nonlinear oscillations of
mechanical systems. Let us consider the motion of a physical pendulum as

an example of the application of elliptical functions [6].



