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PREFACE

The problem of neural and neuro-fuzzy networks training is considered
in this book. The author’s attention is concentrated on the approaches
which are based on the use of a separable structure of plants models—
nonlinear with respect to some unknown parameters and linear relating
to the others. It may be, for example, a multilayered perceptron with a
linear activation function at its output, a radial base neural network, a
neuro-fuzzy Sugeno network, or a recurrent neural network, which are
widely used in a variety of applications relating to the identification and
control of nonlinear plants, time series forecasting, classification, and
recognition.

Static neural and neuro-fuzzy networks training can be regarded as a
problem of minimizing the quality criterion in respect to unknown para-
meters included in the description of them for a given training set. It is
well-known that it is a complex, multiextreme, often ill-conditioned non-
linear optimization problem. In order to solve its various algorithms, that
are superior to the error backpropagation algorithm and its numerous
modifications in convergence rate, approximation accuracy and generaliza-
tion ability have been developed. There are also algorithms that directly
take into account separable character of networks structure. Thus, in Ref.
[1] the VP (variable projection) algorithm for static separable plants models
is proposed. According to this algorithm, the initial optimization problem
is transformed into a new problem, but only with relation to nonlinear
input parameters. Under certain conditions the stationary points sets of
two problems coincide, but at the same time dimensionality decreases, and,
as a consequence, there is no need for selecting initial values to linearly
incoming parameters. Moreover, the new optimization problem is better
conditioned [2—4], and if the same method is used for initial and trans-
formed optimization problems, the VP algorithm always converges after a
smaller number of iterations. At the same time, the VP algorithm can be
implemented only in a batch mode and, in addition, the procedure of
determining partial derivative of modified criteria in respect to the para-
meters becomes considerably more complicated. The hybrid procedure for
a Sugeno fuzzy network training is proposed in Refs. [5,6], that is based on
the successive use of the recursive least-square method (RLSM) for deter-
mining linearly entering parameters and gradient method for nonlinear
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ones. The extreme learning machine (ELM) approach is developed in
Refs. [7,8]. On the basis of this approach only linearly incoming para-
meters are trained and nonlinear ones are drawn at random without taking
into account a training set. However, it is well-known that this approach
can provide quite low accuracy at a relatively small size of the training set.
It also should be noted that while the ELM and the hybrid algorithms ini-
tialization use the RLS algorithm, it is necessary to select the initial values
for the matrix which satisfies the Riccati equation. Moreover, as a priori
information about the estimated parameters is absent, its elements are gen-
erally put proportional to a large parameter, which may lead to divergence
in the case of even linear regression.

The purpose of this book is to present new approaches to training of
neural and neuro-fuzzy networks which have a separable structure. It is
assumed that in addition to the training set a priori information only
about the nonlinearly incoming parameters is given. This information
may be obtained from the distribution of a generating sample, a training
set, or some linguistic information. For static separable models the prob-
lem of minimizing a quadratic criterion that includes only that informa-
tion is considered. Such a problem statement and the Gauss—Newton
method (GNM) with linearization around the latest estimate lead to new
online and offline training algorithms that are robust in relation to
unknown a priori information about linearly incoming parameters. To be
more precise, they are interpreted as random variables with zero expecta-
tion and a covariance matrix proportional to an arbitrarily large parameter
{4 (soft constrained initialization). Asymptotic representations as f— 0O
for the GNM, which we call diffuse training algorithms (DTAs), are
found. We explore the DTA properties. Particularly the DTAs’ conver-
gence in case of the limited and unlimited sample size is studied. The
problem specialty is connected with the observation model separable
character, and the fact that the nonlinearly inputting parameters belong to
some compact set, and linearly inputting parameters should be considered
as arbitrary numbers.

It is shown that the proposed DTAs have the following important
characteristics:

1. Unlike their prototype, the GNM with a large but finite p, the DTAs
are robust with respect to round-off error accumulation.

2. As in Refs. [1—4] initial values choice for linearly imputing
parameters is not required, but at the same time there is no need to
evaluate the projection matrix partial derivative.
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3. Online and offline regimes can be used.

4. The DTAs are followed with the ELM approach and the hybrid
algorithm of the Sugeno neuro-fuzzy network training [6,7], and pre-
sented modeling results show that developed algorithms can surpass
them in accuracy and convergence rate.

With a successful choice of a priori information for the nonlinear
parameters, rapid convergence to one of the acceptable minimum crite-
ria points can be expected. In this regard, the DTAs’ behavior analysis
at fixed values of the nonlinear parameters, when a separable model is
degenerating into a linear regression, is very important. We attribute
this to the possible influence of the properties of linear estimation
problem on the DTAs. The behavior of the RLSM with soft and diffuse
initialization in a finite time interval, including a transition stage, is
considered. In particular, the asymptotic expansion for the solution of
the Riccati equation, the gain rate in inverse powers of y, and condi-
tions for the absence of overshoot in the transition phase are obtained.
Recursive estimation algorithms (diffuse) as pt— 00 not depending on a
large parameter g which leads to the divergence of the RLSM are
proposed.

The above-described approach is generalized in the training problem
of separable dynamic plant models—a state vector and numerical para-
meters are simultaneously evaluated using the relations for the extended
diffuse Kalman filter (DKF) obtained in this book. It is assumed that in
addition to the training set a priori information only on nonlinearly
inputting parameters and an initial state vector, which can be obtained
from the distribution of a generating sample, is used. Linearly inputting
parameters are interpreted as random variables with a zero expectation
and a covariance matrix proportional to arbitrarily large parameter pu.
Asymptotic relations as g — 00, which describe the extended KF (EKF),
are called the diffuse extended KE

The theoretical results are illustrated with numerical examples of iden-
tification, control, signal processing, and pattern recognition problem-
solving. It is shown that the DTAs may surpass the ELM and the hybrid
algorithms in approximation accuracy and necessary iterations number. In
addition, the use of the developed algorithms in a variety of engineering
applications, which the author has been interested in at different times, is
also described. These are dynamic mobile robot model identification,
neural networks-based modeling of mechanical hysteresis deformations,
and monitoring of the electric current harmonic components.
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The book includes six chapters. The first chapter presents an overview
of the known models of objects and results relating to the subject of the
book.

The RLSM behavior on a finite interval is considered in Chapter 2,
Diffuse Algorithms for Estimating Parameters of Linear Regression. It is
assumed that the initial value of the matrix Riccati equation is propor-
tional to a large positive parameter p. Asymptotic expansions of the
Riccati equation solution and the RLSM gain rate in inverse powers of 1
are obtained. The limit recursive algorithms (diffuse) as p— 00 not
depending on a large parameter p which leads to the RLSM divergence
are proposed and explored. The theoretical results are illustrated by exam-
ples of solving problems of identification, control, and signal processing.

In Chapter 3, Statistical Analysis of Fluctuations of Least Squares
Algorithm on Finite Time Interval, properties of the bias, the matrix of
second-order moments, and the normalized average squared error of the
RLSM on a finite time interval are studied. It is assumed that the initial
condition of the Riccati equation is proportional to the positive parame-
ter 4 and the time interval includes an initialization stage. Based on the
Chapter 2, Diffuse Algorithms for Estimating Parameters of Linear
Regression results, asymptotic expressions for these quantities in inverse
powers of p for the soft initialization and limit expression for the diffuse
initialization are obtained. It is shown that the normalized average squared
error of estimation can take arbitrarily large but bounded values as
= 00. The conditions are expressed in terms of signal/noise ratio under
which overshoot does not exceed the initial value (conditions for the
absence of overshoot).

Chapter 4, Diffuse Neural and Neuro-Fuzzy networks Training
Algorithms deals with the problem of multilayer neural and neuro-fuzzy
networks training with simultaneous estimation of the hidden and output
layer parameters. The hidden layer parameters probable values and their
possible deviations are assumed to be known. A priori information about
the output layer weights is absent and in one initialization of the GNM
they are assumed to be random variables with zero expectations and a
covariance matrix proportional to the large parameter and in the other
option either unknown constants or random variables with unknown sta-
tistical characteristics. Training algorithms based on the GNM with line-
arization about the latest estimate are proposed and studied. The
theoretical results are illustrated with the examples of pattern recognition,
and identification of nonlinear static and dynamic plants.
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The estimation problem of the state and the parameters of the discrete
dynamic plants in the absence of a priori statistical information about ini-
tial conditions or its incompletion is considered in Chapter 5, Diffuse
Kalman Filter. Diffuse analogues of the Kalman filter and the extended
Kalman filter are obtained. As a practical application, the problems of the
filter constructing with a sliding window, observers restoring state in a
finite time, recurrent neural networks training, and state estimation of
nonlinear systems with partly unknown dynamics are considered.

Chapter 6, Applications of Diffuse Algorithms provides examples of
the use of diffuse algorithms for solving problems with real data arising in
various engineering applications. They are the mobile robot dynamic
model identification, hysteresis mechanical deformations modeling on the
basis of neural networks, and electric current harmonic components
monitoring.

The author expresses deep gratitude to Head of Department Y.B.
Ratner from Marine Hydrophysical Institute of RAS, Department of
Marine Forecasts and Professor S.A. Dubovik from Sevastopol State
University, Department of Informatics and Control in Technical Systems
for valuable discussions, and to his wife Irina for help in preparation of
the manuscript.

Boris Skorohod,
Sevastopol, Russia
January 2017
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O N U W o -

1.1 SEPARABLE MODELS OF PLANTS AND TRAINING
PROBLEMS ASSOCIATED WITH THEM

1.1.1 Separable Least Squares Method

Let us consider an observation model of the form
1 =®(z,Ra, t=1,2,..,N, (1.1)

where 2, = (211, 2265 - s 2m) . ER" is a vector of inputs, y; = (y1r
Y2ts « - .,y,,,t)TeR'" is a vector of outputs, a=(ay,aq,..., a,) T erR’,
B=(B4,B-...3)T €R! are vectors of unknown parameters, ®(z, 3) is
an m X r matrix of given nonlinear functions, R' is the space of vectors of
length [, (-)" is the matrix transpose operation, and N is a sample size.

The vector output y, depends linearly on « and nonlinearly on f3.
This model is called the separable regression (SR) [1]. If the vector 3 is
known, then Eq. (1.1) is transformed into a linear regression.

Let there be given the set of input—output pairs {2y},
t=1,2,...,N and the quality criteria
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