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Preface

The main aim of this book, published at the time Eurocode 8 is starting its course as the
only seismic design standard in Europe, is to support its application to concrete buildings —
the most common type of structure — through education and training. It is addressed to
graduate or advanced undergraduate students who want to acquire the skills and knowledge
that are necessary for the informed use of Eurocode 8 in their career, to practitioners wish-
ing to expand their professional activity into seismic design with Eurocode 8, to instruc-
tors of such students or practitioners in University or professional training programmes, to
researchers and academics interested in seismic analysis and design of concrete buildings, to
software developers, code writers, to those with some official responsibility for the use and
application of Eurocode 8, and so on. Besides its prime aim as support document for educa-
tion and training in seismic design of concrete buildings with Eurocode 8, the book comple-
ments the currently available background documents for the present version of Eurocode
8 as far as RC buildings are concerned; as such, it will be useful for the coming evolution
process of Part 1 of Eurocode 8.

The book puts together those elements of earthquake engineering, structural dynamics,
concrete design and foundation/geotechnical engineering, which are essential for the seismic
design of concrete buildings. It is not a treatise in any of these areas. Instead, it presumes
that the reader is conversant with structural analysis, concrete design and soil mechanics/
foundation engineering, at least for the non-seismic case. Starting from there, it focuses
on the applications and extensions of these subject areas, which are necessary for the spe-
cialised, yet common in practice, seismic design of concrete buildings. Apart from these
fundamentals, which are only covered to the extent necessary for the scope of the book, the
book presents and illustrates the full body of knowledge required for the seismic design of
concrete buildings — its aim is to provide to the perspective designer of concrete buildings all
the tools he/she may need for such a practice; the reader is not referred to other sources for
essential pieces of information and tools, only for complementary knowledge.

A key component of the book is the examples. The examples presented at the end of each
chapter follow the sequence of its sections and contents, but often gradate in length and
complexity within the chapter and from Chapter 2 to 6. Their aim is not limited to illustrat-
ing the application of the concepts, methods and procedures elaborated in the respective
chapter; quite a few of them go further, amalgamating in the applications additional pieces
of information and knowledge in a thought-provoking way. More importantly, Chapter 7 is
devoted to an example of a close-to-real-life multistorey concrete building; it covers in detail
all pertinent modelling and analysis aspects, presents the full spectrum of analysis results
with two alternative methods and highlights the process and the outcomes of detailed design.
Last but not least, each chapter from 2 to 6 includes problems (questions) without giving the
answers to the reader. The questions are, in general, more challenging and complex than the
examples; on average they increase in difficulty from Chapters 2 to 6 and — like most of the
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examples — often extend the scope of the chapter. Unlike the complete example in Chapter 7,
which relies on calculations by computer for the analysis and the detailed design, the ques-
tions —and most of the examples — entail only hand calculations, even for the analysis. They
are meant to be solved with help and guidance from an instructor, to whom the complete
and detailed answers will be available. Moreover, the questions have been formulated in a
way that provides flexibility to the instructor to tune the requirements from students to their
background and skills, and possibly to extend them according to his/her judgement.
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Chapter |

Introduction

1.1 SEISMIC DESIGN OF CONCRETE BUILDINGS
IN THE CONTEXT OF EUROCODES

As early as 1975, the European Commission launched an action programme for structural
Eurocodes. The objective was to eliminate technical obstacles to trade and harmonise tech-

nical

specifications in the European Economic Community. In 1989, the role of Eurocodes

was defined as European standards (European Norms (EN)) to be recognised by authorities
of the Member States for the following purposes:

As a means for enabling buildings and civil engineering works to comply with the Basic
Requirements 1, 2 and 4 of the Construction Products Directive 89/106/EEC of 1989,
on mechanical resistance and stability, on safety in case of fire and on safety in use
(replaced in 2011 by the Construction Products EU Regulation/305/2011 (EU 2011),
which also introduced Basic Requirement 7 on the sustainable use of natural resources)
As a basis for specifying public construction and related engineering service contracts;
this relates to Works Directive (EU 2004) on contracts for public works, public sup-
ply and public service (covering procurement by public authorities of civil engineering
and building works) and the Services Directive (EU 2006) on services in the Internal
Market — which covers public procurement of services

As a framework for drawing up harmonised technical specifications for construction
products

It is worth quoting from EU Regulation/305/2011 of the European Parliament and the
European Union (EU) Council (EU 2011), given its legal importance in the EU, which deals
with the basic requirement for buildings and civil engineering works (called ‘Construction
works” in the following text) which the Eurocodes address:

Construction works as a whole and in their separate parts must be fit for their intended
use, taking into account in particular the health and safety of persons involved through-
out the life cycle of the works. Subject to normal maintenance, construction works must

satisfy these basic requirements for construction works for an economically reasonable
working life.

1.

Mechanical resistance and stability
Construction works must be designed and built in such a way that the loadings that

are liable to act on them during their construction and use will not lead to any of the
following:

(a) collapse of the whole or part thereof;
(b) major deformations to an inadmissible degree;
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(c) damage to other parts of the construction work or to fittings or installed equip-
ment as a result of major deformation of the load-bearing construction;
(d) damage by an event to an extent disproportionate to the original cause.
2. Safety in case of fire
Construction works must be designed and built in such a way that in the event of an
outbreak of fire:
(a) the load-bearing capacity of the construction work can be assumed for a specific
period of time;
(b) the generation and spread of fire and smoke within the construction work are
limited;
(c) the spread of fire to neighbouring construction works is limited;
(d) occupants can leave the construction work or be rescued by other means;
e) the safety of rescue teams is taken into consideration.
asl]

4. Safety and accessibility in use
Construction works must be designed and built in such a way that they do not pres-
ent unacceptable risks of accidents or damage in service or in operation such as slip-
ping, falling, collision, burns, electrocution, injury from explosion and burglaries.
In particular, buildings must be designed and built taking into consideration acces-
sibility and use for disabled persons.

[«

7. Sustainable use of natural resources
Construction works must be designed, built and demolished in such a way that the
use of natural resources is sustainable and in particular ensure the following:
(a) reuse or recyclability of the construction works, their materials and parts after

demolition;

(b) durability of the construction works;

(c) use of environmentally compatible raw and secondary materials in the construc-
tion works.

—_

Totally, $8 EN Eurocode Parts were published between 2002 and 2006, to be adopted
by the CEN members and to be fully implemented as the sole structural design standard by
2010. They are the recommended European codes for the structural design of civil engineer-
ing works and of their parts to facilitate integration of the construction market (construction
works and related engineering services) in the European Union and enhance the competitive-
ness of European designers, contractors, consultants and material and product manufactur-
ers in civil engineering projects worldwide. To this end, all parts of the EN Eurocodes are
fully consistent and have been integrated in a user-friendly seamless whole, covering in a
harmonised way practically all types of civil engineering works.

In 2003, the European Commission issued a ‘Recommendation on the implementation
and use of Eurocodes for construction works and structural construction products’ (EC
2003). According to it, EU member states should adopt the Eurocodes as a suitable tool for
the design of construction works and refer to them in their national provisions for struc-
tural construction products. The Eurocodes should be used as the basis for the technical
specifications in the contracts for public works and the related engineering services, as well
as in the water, energy, transport and telecommunications sector. Further, according to
the ‘Recommendation’, it is up to a Member State to select the level of safety and protec-
tion (which may include serviceability and durability) offered by civil engineering works on
its national territory. To allow Member States to exercise this authority and to accommo-
date geographical, climatic and geological (including seismotectonic) differences, without



