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Editor’s Preface to the English Edition

During the past twenty-five to thirty years the theory of probability in
Banach and other linear topological spaces has developed very rapidly, and
in a systematic fashion. One of the most important areas of research is
concerned with the study of probability distributions (or measures) on
Banach spaces. This English edition of Professor Vakhania’s Russian text is
the first systematic and clearly written introduction to the theory of
probability distributions on linear spaces. This book can be used as a class
or seminar text, for self-study', and as a reference work. It will be of interest
to a broad audience of probabilists, functional analysts, measure theorists,
statisticians, and a wide range of applied mathematicians who need results
on probability distribution on linear spaces in connection with research on
random equations and related topics.

Results presented in this book are extended in the following two papers
by Professor Vakhania and his students: (1) S. A. Chobanyan and V. L.
Tarieladez, “Gaussian characterization of certain Banach spaces.” J.
Multivar. Anal. 7: 183-203, 1977, and (2) N. N. Vakhania and V. L
Tarieladez, “Covariance operators of probability measures in locally con-
vex spaces,” Theory Probab. Appl. 23: 1-21, 1978. The reader is encouraged
to stydy the above papers and to investigate the recent literature on the
connections between probability theory in Banach spaces and their geomet-
ric properties.

Professor Vakhania has made some minor changes and corrections to
this translation of the Russian edition by Professor I. I. Kotlarski. The
series editor has made some changes in style.

A. T. Bharicha-Reid
Series Editor



Introduction

Probability distributions on linear spaces arise in probability theory in the
following way. In the classical one-dimensional case, instead of investigat-
ing random variables, one can investigate probability distributions on the
real line. According to this, in the infinite-dimensional case, for the process
£(t € T), one should consider distributions on the family of all sample
functions, that is, on the space R” of all real functions on 7. But it is only
in the finite-dimensional case (when T is a finite set), that the analogy is
sufficiently good. In the infinite-dimensional case problems arise that make
little sense or are trivial in the finite-dimensional case. In reality, something
known in advance about the random vector in R", does not necessarily
help to simplify the sample space. For example, if it is known that the
distribution is concentrated on some subspace, then we have again RX,
where k < n, but this is no simplification. In the case of a function space
R”, a priori information that the sample functions belong to some linear
subspace can be used because different linear subspaces can have different
natural topologies (which would not make sense for the whole R7). This
allows different additional possibilities of describing the process under
consideration. Sometimes the same process can be embedded into different
subspaces, thus varying the methods of investigation and the terms in
which the process is described.

In this way, as a natural abstraction, there arises the notion of a
probability distribution on an abstract linear space—in other words, the
notion of a random element with values in a linear space.

There exists a different approach to these notions, which is disassociatea
from probability theory. This approach, which comes from the theory of
functions and functional analysis, is motivated by -the inner logic of
developments in pure analysis. It is quite natural to extend the theory of
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integration to include functions defined on infinite-dimensional linear
spaces, as well as functions of one and several variables. This endeavor
.immediately brings us to the notion of measures on linear spaces. Finite
measures, normed by one, are called probability measures, or probability
distributions. )

In general, the problem of investigation of normed measures on linear
spaces is very broad and has many different directions with or without
emphasizing the possibility of probabilistic interpretation. Let us note the
basic results of some of the directions, on which this book is based.
Although all these investigations will not be covered, we shall go through a
short description of the results that are given and therefore start with some
background information.

In 1935 A. N. Kolmogorov [1] introduced the notion of a characteristic
functional (i.e., of the Fourier transform) of the measure p on the Banach
space X (as an integral with respect to u of exp[if(x)], f € X*). He gave the
basic properties of the characteristic functional and pointed out the impor-
tance and possibility of further investigations in this area.

In 1951 M. Fréchet [2] examined Gaussian random elements (Gaussian
distributions) in a Banach space. The random element x € X was called
Gaussian if all real-valued random variables f(x), f € X*, were Gaussian.

A systematic investigation of random elements with values in Banach
spaces was begun in the works of E. Mourier and R. Fortet. In her basic
work E. Mourier [3], in 1953, defined the expectation, using the weak
integral ( Pettis integral) of a random element. Further, for the case where X
is a separable Hilbert space H, she defined an analogue of the variance,
namely, the covariance operator, presupposing the existence of the expecta-
tion of the square of the norm of the random element. For Gaussian
random elements in H, Mourier proved the existence of the expectation
itself and of the expectation of the square of the norm, thus giving one of
her basic results—the general form of the characteristic functionals of all
Gaussian distributions on H. ]

The next steps in the investigation of distributions on Hilbert spaces are
found in the works of Yu. V. Prohorov and V. V. Sazonov. In 1956 Yu. V. -
Prohorov [4] gave the analogue of Lévy’s distance between distribution
functions for the case of measures in metric spaces, and investigated the

* conditions for compactness and convergence of families of measures rela-
tive to this metric. Applying these results to distributions on Hilbert spaces,
Prohorov obtained theorems expressing conditions for relative compactness
of a family of distributions in terms of the corresponding family of
characteristic functionals. These results served as the basis for a further
result given by V. V. Sazonov [5] in 1958. He found that with respect to the
topology on H, the analogue of Bochner’s theorem is true: A positive-
definite normed complex functional on H is a characteristic functional of some
di: ‘ribution on H if and only if it is continuous with respect to this topology.
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These problems are closely related to the problem of extension of a weak
distribution to a measure. While solving this problem, R. A. Minlos [6]
" independently obtained a theorem about the extension of generalized
random processes, from which the analogue of Bochner’s theorem follows
for the distributions on spaces which are conjugate to countably normed
Hilbertian nuclear spaces. The connection between the results of R. A.
Minlos and V. V. Sazonov was perceived and analyzed by A. N. Kol-
mogorov [7].

Further references to other works connected to these problems will be
given later, generally in the introductions to the chapters.

We will now briefly describe the book.

It contains four chapters. In the first chapter the general problems of
.probability distributions on the linear topological space R" of all real
numerical sequences with the usual linear operations and Tikhonov’s
topology are studied. After a preliminary description of the space R” and
its conjugate, we prove the analogues of the theorems of Bochner and Lévy
for characteristic functionals.

The space R"™ is first of all the natural sample space for random
sequences. It is also interesting because a large class of linear spaces X may
be embedded linearly and isomorphically into R”, which allows reduction
of problems from X to R". This process is particularly effective if X is a
Hilbert space, because in this case its image is /,, and the isomorphism is
isometric (Riesz—Fischer theorem). Therefore all results proved for I, are
also true for a general (separable) Hilbert space.

Further, we consider probability distributions on the Banach spaces
L,(1 < p < ), cg, and /,,. We obtain some results analogous to Bochner’s
theorem under some conditions on the moments. Moreover, conditions of
relative compactness of families of distributions on these spaces are investi-
gated, along with the relations of these conditions to the properties of the
corresponding families of characteristic functionals. Thus a result analo-
gous to Lévy's theorem is obtained, which is the best possible in this
situation. The basic idea in getting these results is the following: Each of
the spaces [, ¢, I, is considered as a linear subspace of R", and the
theorem proved for R" is applied. In this way the problem is reduced to
obtaining conditions under which the distribution on R" will be concen-
trated on a given subspace of R". The idea of enlarging the space is not, of
course, new. However, we did not limit ourselves to considerations in the.
whole space. This space is a helping tool only and is not involved in the
final formulations. -

The method of embedding in R” is also used in the second chapter, in
which we investigate Gaussian distributions on R”" and its subspaces. First,
the case of the whole space R" is considered, and then we go to L,
1 € p < 0. After proving some auxiliary theorems we come to the basic
theorem of this chapter: In order that a Gaussian distribution R"™ with



Xii Introduction

expectation {a, } and covariance matrix Il be concentrated on [, (and hence
to be Gaussian in IP), it is necessary and sufficient that {a,} € l, and
(s} € L2

Then, we give two other formulations of this result. One is a theorem on
the general form of characteristic functionals of all Gaussian distributions
on [, which sheds new light on and is a generalization of the aforemen-
tioned result of E. Mourier. The other formulation gives an analogue of
Bochner’s theorem for Gaussian distributions on /, by constructing a
proper topology in the conjugate space. This topology is a natural general-
ization of Sazonov’s topology.

Further, we show some other facts about Gaussian distributions on [,
which are connected with different aspects of the theory of stochastic
processes and their applications. By doing this we can consider these results
as corollaries from the general theorems already proved, or as examples
that illustrate their applications. We mention the proof of the exponential
integrability of the square of the norm with respect to the Gaussian
distribution, the central limit theorem that contains Mourier’s theorem
(p = 2) and Varadarajan’s theorem (p = 1), the investigation of a stochastic
differential equation of heat conduction with white noise on the right side
(the Fourier transform of the solution of this equation determines the
Gaussian distribution on R¥), and the characterization of nondegenerate
Gaussian distributions (the nondegeneracy of u is equivalent to the follow-
ing property: The p-measure of an arbitrary ball with a nonzero radius is
positive).

Finally, in this chapter we investigate Gaussian distributions on the
spaces ¢, and /. We shall mention here only one result: For each R >0,
there exists on /, a nondegenerate Gaussian distribution p, such that the
p-measure of an arbitrary ball with radius R is zero.

The third chapter considers a separable Hilbeft space H. Based on
previous comments, the space H can be treated as /,, hence we can use at
once the results of previous theorems for this casé. In this way we again
obtain the known, as well as some new results.

Next, we come to some special problems, which are quite usual and
traditional for the theory of probability. This part of the chapter is also
connected with the methods and results of the second chapter. First, we
consider the question of evaluating the rate of convergence in the central
limit theorem. We consider the finite-dimensional case separately; and, in
particular, when the coordinates of the vectors are independent, we obtain
a uniform estimate in the class of all balls with the classical order for n
(namely, n~"/?), using the sum of Lyapunov’s ratios as a parameter, which
determines the dependence on the distribution. Then, we obtain in the case
of a general Hilbert space, a uniform estimation of order (In n)~' on thé
class of ellipsoids with centers from a given ball, by operating on the
distributions and applying the characteristic functionals.
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Then, we consider the problem of evaluating large deviations for normed
sums of independent random elements in H with bounded norms. An
“exponential type inequality is obtained for the evaluation of the measures
of the complements of_ the ellipsoids that are defined by the nuclear
operators.

Next in the third chapter we consider the distribution of the inner
product of two Gaussian random elements in H. This problem is connected
with the eigenvalue problem for a system of two operator equations.
Particular cases are shown in which the solution is found in one form or
another.

Finally, we define and give some simple properties of an integral with
respect to a random measure with values in H, of a function whose values
are linear operators H — H. This integral is a random element in H; and
we find, in particular,' its covariance operator, which is in the form of a
(nonrandom) integral in the strong sense (Bochner’s integral).

The fourth chapter is devoted to some general problems of probability
distributions on abstract Banach spaces. We discuss the notion of a
characteristic functional and note its basic properties. We prove a theorem
on conditions for the existence of the Pettis integral, which includes a
theorem on the existence of the expectation of an arbitrary Gaussian
distribution on a separable space X. Then, the covariance operator R is
defined as a bounded linear transformation X — X**. The conditions for
the existence of R are reduced to the natural necessary conditions; in
particular, each Gaussian distribution has a covariance. The operators that
transform a space into its conjugate have special properties, which distin-
guish them from the general transformations of one Banach space into
another. For instance, the notions of symmetry and nonnegativeness can be
applied to such operators, and all covariance operators have these proper-
ties. Under some broad assumptions the converse theorem is proved: Every
symmetric, nonnegative, bounded linear operator X* —> X** is the covariance
operator of some distribution on X. The proof is based on the following
factorization lemma, which is also of interest from other points of view: An
arbitrary operator R:X*-—> X** with the preceding property can be
factorized into the form R = A*A, where 4 is a bounded linear transforma-
tion of the space X* into some auxiliary Hilbert space (in some sense the
operator 4 plays the role of the square root of R).

Next, the transformations given by the covariance operators are investi-
gated; and, in particular, different sufficient conditions are considered
under which RX* C X (in the sense of the natural embedding of X into
X**).

Further, we look at the problem of the characterization of covariance
operators of Gaussian distributions. Using the factorization R = A*4, we
reduce the problem to that of characterizing bounded linear transforma-
tions A : X* — H, where H is an auxiliary Hilbert space. We define in two
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ways Hilbert—Schmidt linear transformations of a Banach space into a
Hilbert space (and conversely, a Hilbert space into a Banach space).
Correspondingly, we obtain two definitions for the operator R : X* — X**
to be a nuclear operator, and we prove that the first condition of being a
nuclear operator is necessary and the second is sufficient for R to belong to
the class of Gaussian covariance operators. By making some strongly
restrictive assumptions on X, we find that both definitions of a nuclear
operator are identical, and hence we obtain the necessary and sufficient
condition. The example of the space /, (p # 2) shows immediately that the
assumptions in the given definitions are not directly related to the existing
general definition of a nuclear transformation of one Banach space into
another.

Finally, we show that the conditions for an operator R to belong to the
class of Gaussian covariance operators are of a topological nature: There
exists a Hausdorff locally convex topology in X*, which generalizes the
topology induced in the second chapter for /[, and the necessary and
sufficient condition is the continuity of the quadratlc functional (Rf)(f)
with respect to this topology.

Note that some of the results in the fourth chapter could be made more
general by considering linear topological spaces instead of Banach spaces.
However, the whole style of the book and its relatively elementary level
would be lost-by doing this, and it would be too high a price to pay for
generalizations of some separate particular results.

I would like to thank Yu. V. Prohorov and V. V. Sazonov for our
discussions on the results considered in this book, as well as on other
problems. This has been an opportunity [ have enjoyed for many years.
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1

Characteristic Functionals
of Probability Distributions
on Spaces

of Numerical Sequences

- Introduction

Section 1.1 is a general introduction, which gives a description of the space
R" and its conjugate (dual). Note that not all the properties given here will
be used later on. However, investigation of different types of infinite-
dimensional spaces, in which the method of characteristic functionals is
applied, should be considered not only for their particular interest but also
as the possible steps along the way toward explaining the most general
situations where these methods could be applied. From this point of view, it
is desirable to underline those properties that help to apply the method of
characteristic functionals in each such case. The importance of this method
is connected with the theorems of Bochner and Lévy, which were first
proved in the one-dimensional case.

In Section 1.2 it is shown that for a distribution on R” both these
theorems are true in the classical formulation. Then we go to Banach
spaces X = [ (1 < p < ), ¢y, and /,. We consider X not as a measurable
space itself gut as a measurable subset of R", and we obtain conditions
under which

a. The distribution on R” will be concentrated on X.

b. A compact family of distributions on R”", each of which is concen-
trated on X, will also be compact in X.

By this method, in Sections 1.3 and 1.4, we obtain different theorems of the
type of Bochner and Lévy, which include as particular cases some of the
results of Yu. V. Prohorov and V. V. Sazonov for Hilbert spaces (this is
described more completely in Section 3.1). ,

The main results of the first chapter are published in references 8 and 9.
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In connection with the resulis of this chapter we note the survey-type
article by Yu. V. Prohorov [10], in which is given a quite adequate
description (with a large bibliography) of results of the method of charac-
teristic functionals of distributions on linear topological spaces.

1.1 The Space R": BasicPropelﬂes
L.1.1

Recall that R” is defined as the linear space of all real numerical sequences
with the natural group operation (addition) and multiplication by real
numbers. We shall say that the element 0 5= x € R" has length L, if x, =0
for k > L and x; # 0. If such an L does not exist, then the length of this
element will be infinity. The length of the zero element will be zero.

We shall assign to the linear space R the following (Tikhonov’s)
topology, taking as a base of neighborhoods of the zero element the class of
sets of the form

Ou,(O)-ﬂ{x ]x,,l(c} €e>0, n>1.

The continuity of linear operations may be verified easily. Thus we
obtain a linear topological space, which will be denoted R". We note the
basic properties of this space.

1.-R" has a countable base, and therefore it is separable.

2. Convergence in R” is equivalent to coordinate convergence.

3. R is a Fréchet space (F-space), that is, it is locally convex, metriz-
able, and complete.

The proofs of (1) and (2) are simple. Local convexity is obvious. To show

that the space is metrizable we can take the following function as the
metric. '

% — yil
%, —
(%, y) = Eakl+|xk —

where the a, are positive numbers that form a convergent series. The
completeness is obvious.

4, R" is additionally a Montel--Fréchet space, that is, along with (3), each
closed bounded' set in R¥ is compact.?

'The set M C R" being bounded is taken to mean: For each neighborhood of zero 0, (0)
there exists A > 0 such that
(A :xe M) co,(0).
ZNote that because of the countable base, compactness and sequential compactness are
equivalent for sets in R,
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PROOF. The conclusion is a consequence of the well-known Bolzano-
Weierstrass theorem and the fact that compactness and boundedness of
sets in RV mean correspondingly coordinatewise compactness and
coordinatewise boundedness.

Note here that for relative compactness (also for boundedness) of a set M
in R” it follows (see also reference 11, p. 346) that it is necessary and
sufficient that

foralxeM, |x|<A4,4,>0 (k=12,...).
From this it follows that the space R” is not locally compact. O

' Now we want to find a space conjugate to R”™. By a conjugate space we
mean a linear space (without fixing a topology) of all continuous linear
functionals defined on R”, using the usual operations of addition and
scalar multiplication by reals (real numbers). Denote by R} the subset of
the space R”™, which consists of all elements with finite lengths. -

5. The conjugate to R is RY.

PROOF. It is sufficient to show that an arbitrary continuous linear func-
tional f on R" has the form f(x) = 3, fyx,, where the f, are the coordi-
nates of a fixed element f € Ry and are uniquely determined by the
functional f. Obviously, x can be represented in the form

n
x= 3 xe® + rivx,
k=1

where e® = (¢}, with ¢ =0 for i # k and ¢’ =1, and the first n
coordinates of the element r™x are equal to zero. Hence r""x —>0asn—>o0
for each element x € R”™. Now, using the additivity and contmmty of the
functional f, and denoting the real number f(e*’) by f;, we obtain from the
previous equality the representation f(x)= > 7., f,,xk We need to show
that the element f= { f} has a finite length. If this is not the case, then
there exists an infinite subsequence e’ such that |f|> 0. Then, g
= e®/f, -0 for i— oo, whereas f(g) = 1 for all i, whnch contradicts the
continuity. O

1.1.2

In the linear space R}, which is a conjugate to a Fréchet space, one can
introduce ([12], p. 74, although in this case it can be done explicitly) a
locally convex topology I, (called the topology of uniform convergence on
compact sets) by defining as a base of neighborhoods of zero the family of
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sets of the form
Uox(©) = {1 sup | f(x)| < e},
xekK

where € is an arbxtrary positive number and K is an arbitrary compact set
!

1. The topology I, can also be obtained from another base of neighbor-
hoods of zero by taking sets

Vo ©= 3 (F:15] <a).

where {¢,} is an arbitrary sequence of positive numbers that converges
to zero.

As a matter of fact, it is easy to see that ¥, (0) C U_,(0), if, for
instance, € = (¢/k*)A}, where A; = max(l,4,) and A, (k=12,...)
are numbers determined by the compact set K (see property (4) in
Subsection 1.1.1. Conversely, U, x(0) C V(,,(0), if /4, < g and K is
the product of closed intervals [0, 4, ], because it is clear that in this case

sup | f(x)| > sup| fi| 4.
xEK k

2. The convergence of a sequence of elements f™ € R} in the I _-topology
is equivalent to satisfying the following two conditions.
a. Coordinatewise convergence.

b. Boundedness of the lengths of the elements .

Suppose -0, because it is surely sufficient to consider only
convergence to the zero element. The coordinatewise convergence is
obvious. If the sequence of the lengths is not bounded, then there exists
infinite subsequences of indices {n;} and {k;} such that |f "'/’l > 0. But
then none of the elements will be in the r;elghborhood of zero
v 9)(0) if g <| f"”I Jj=1,2,..., which contradicts the assumption
that f—0. “The converse is sumlarly easy to prove.

3. This convergence reduces to convergence in the so-called weakest topol-
ogy, that is, convergence of { f*”} as the weak convergence of linear
functionals. The fact that convergence of {f™(x)} for all x € RY
follows from the convergence of f™ in the I -topology is a simple
consequence of being able to take the limit under the finite sum. The
converse is nontrivial; that is, weak convergence implies convergence in
the I -topology. For simplicity we consider only convergence to zero.
The coordinatewise convergence follows from the convergence along the
elements e‘*), We shall show that the lengths are bounded. Without loss
of generality, we assume the opposite—that the sequence of lengths { L, }
correspondlng to { f*} is strictly increasing. Then, we have | f{¥| >0,
k=1,2,... and L, = + c0. But f®)(x)—>0 for all x.
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We now construct an element a € RV on which the indicated se- -
quence of functionals will not converge to zero, resulting in a contradic-
tion. We shall determine the element a by means of the following
relations (their solvability is obvious). ‘

=0 for k#*L (j=12,...)

a, fi)=1
a., f;-zn) + L, -/g) -

a, fiY+a, fi+- - +a fii=1,

It is easy to see that f(a)=1 for each n, and thus f" does not
converge to zero along this element.

4. The convergence in the I -topology implies coordinatewise convergence
as previously mentioned. The converse is not true (the simplest example
is: " =1/n for k < n, f{” =0 for k > n). This shows that the I -
topology in R/’ is stronger than the Tikhonov topology (induced from
RY),

5. The linear space R}’ with the I -topology is a linear topological space.
This space as a strong conjugate’ to a Montel space is also a Montel
space ([12], p. 90). The fact that in R} boundedness is equivalent to
compactness can be verified explicitly, noting that each compact
(bounded) set in R}’ consists of elements that have their lengths
bounded by a common L and that the first L coordinates determine a
compact (and respectively bounded) set in the Euclidean L-dimensional
space. From this it follows, in particular, that the linear topological
space (R, 1.) is not locally compact.

6. The conjugate to .RY is R”. The topology of uniform convergence on
I-compact sets in R} (i.e., the topology I.= /, in R") is identical with
the original topology.

The proof is very simple, hence we omit it.

Lk3

We now need to introduce the class of measurable sets in the space R".
Sets in R" will be called measurable if they belong to the minimal g-algebra
«which contains all Borel cylinders, that is, sets of the form -

{x X € RY, (%, % .., %) E B,

3By strong conjugate we mean the conjugate space with the topology I, of uniform conver-
gence on bounded sets. But it is obvious that /, = [_ in the case when the original space is a
Montel space.



