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“The Main feature of life on this Planet is continuation. That is continuous
movement of everything which involves stops, gaps, and jumps.”



Preface

In this monograph we present recent work of last five years of the author in Approx-
imation Theory. It is the natural outgrowth of his related publications. Chapters
are self-contained and advanced courses can be taught out of this book. An exten-
sive list of references is given per chapter.

The topics covered are diverse. The first eight chapters are dedicated to fractional
monotone approximation theory introduced for the first time by the author, taking
the related ordinary theory of usual differentiation at the fractional differentiation
level having polynomials and splines as approximators. Very little is written so
far about fractional approximation theory which is at its infancy. Chapters 9-10
are dedicated to the approximation by discrete singular operators of Favard style,
e.g. of Picard and Gauss—Weierstrass types. We continue with Chapter 11 which is
about the approximation by interpolating operators induced by neural networks, a
connection with computer science, a very detailed and extensive work covering all
aspects of the topic. We finish with Chapter 12 about approximation theory and
functional analysis on time scales, a very modern topic, detailing all the pros and
cons of the approach.

The book’s results are expected to find applications in many areas of pure and
applied mathematics. As such this monograph is suitable for researchers, graduate

students, and seminars of the above subjects, also to be in all science libraries.

The preparation of book took place during 2014-2015 in Memphis, TN, USA.
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Chapter 1

Fractional Monotone Approximation

Let f € CP([-1,1]), p > 0 and let L be a linear left fractional differential opera-
tor such that L(f) > 0 throughout [0,1]. We can find a sequence of polynomials
@, of degree < n such that L(Q,) > 0 over [0, 1], furthermore f is approximated
uniformly by @,. The degree of this restricted approximations is given by an in-
equalities using the modulus of continuity of f#).

This chapter follows [3].

1.1 Introduction

The topic of monotone approximation started in [6] has become a major trend in
approximation theory. A typical problem in this subject is: given a positive integer
k., approximate a given function whose kth derivative is > 0 by polynomials having
this property.

In [2] the authors replaced the kth derivative with a linear differential operator
of order k. We mention this motivating result.

Theorem 1.1. Let h,k,p be integers, 0 < h < k < p and let f be a real function,
[P continuous in [—1, 1] with modulus of continuity wy (f'7),z) there. Let a; (z),
J = h.h+1, ..k be real functions. defined and bounded on [—1,1] and assume
ay (x) is either > some number a > 0 or < some number 3 < 0 throughout [—1,1].
Consider the operator

L= 2;)] @ [15] (1)

and suppose. throughout [—1,1],
| L(f)>0. (1.2)

Then, for every integer n > 1, there is a real polynomial Q,, (x) of degree < n such
that

L(Q.) > 0 throughout [—1,1] (1.3)
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and
max_|f (z) — Qn (v)] < CnFPw, (f(”). l}) , (1.4)

—1<2<1 7
where C' is independent of n or f.

We need

Theorem (of Trigub see [7; 8]) Let n € N. Be given a real function g, with
g'?) continuous in [—1, 1], there exists a real polynomial g, (x) of degree < n such
that _max g9 (2) — ¢ ()| < Ryni=Pwy (¢W), 1), j = 0.1,...,p, where R, is
indepenael_lt of n or g.

In this chapter we extend Theorem 1.1 to the fractional level. Now L is a linear
left Caputo fractional differential operator. Here the monotonicity property is only
true on the critical interval [0, 1]. Quantitative uniform approximation remains true
on all of [-1,1].

To the best of our knowledge this is the first time fractional monotone Approx-
imation Theory is introduced.

We need and make

Definition 1.1. ([4]. p. 50) Let a > 0 and [a] = m. ([-] ceiling of the number).
Consider f € C™ ([—1,1]). We define the left Caputo fractional derivative of f of
order o as follows:

1 ’ m—a—1 g(m B
(D:——lf) (l‘) :m\/_l(l'—f) lf( )(f)dj, (10)

for any x € [—1, 1]. where I' is the gamma function.
We set
D) _if(x)=f(x),
D™ . f (x) = f™ (z), ¥z €e[-1,1]. (1.6)

1.2 Main Result

We present

Theorem 1.2. Let h,k,p be integers, 0 < h < k < p and let f be a real function,
@) continuous in [—1,1] with modulus of continuity wy (f'7).8), & > 0, there.
Let avj (x), j = h,h+1,....k be real functions, defined and bounded on [—1,1] and
assume for x € [0,1] that ay, (x) is either > some number o > 0 or < some number
B < 0. Let the real numbers g =0 < oy <1 <y <2< ... <ap <p. Here
Di’il f stands for the left Caputo fractional derivative of [ of order o; anchored at

—1. Consider the linear left fractional differential operator
k

L= a;(=) [D] (1.7)

i=h
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and suppose, throughout [0, 1],
L(f)=0. (1.8)

Then, for any n € N, there exists a real polynomial Q, (x) of degree < n such
that

L(Qn) >0 throughout [0,1], (1.9)

and

max |f (z) — Qn ()| < Cn*Puw, (f("), %) , (1.10)

—1<2<1
where C' is independent of n or f.
Proof. Let n € N. By the theorem of Trigub given a real function g, with g®
continuous in [—1, 1], there exists a real polynomial g, (z) of degree < n such that
max |¢Y) (z) — ¢\ (2)| < Rpn’ Pw; | ¢, : : (1.11)
—1<z<1 || n = n

Jj=0.1,....p, where R, is independent of n or g.

Here h.k,pe Z,, 0 < h < k <p.

Let ; >0, j=1,..,p,suchthat 0 < a; <1< a;<2<a3<3..<... <<
p. That s [oy] =4, =1, ...p.

We consider the left Caputo fractional derivatives

(D 19) (x) = ﬁ /Al (z— )77 gU) (¢) dt, (1.12)
) J_

(Di_i9) (@) =9Y (@),
and

(DY 1qn) (2) = ﬁ /1 (z — )77 gD (t) dt, (1.13)
J7/ S —

(Dlosan) (@) =0 (@) 5 =1,.m,
where I' is the gamma function
I(w)= /ooe_tt“_ldi‘, v > 0. (1.14)
0
We notice that
|(DX19) (@) = (D221an) ()]

T . ) x . )
:.;/ (z — )7 %~ gl (f)dt—/ (z—t) "™ g9 () dt
F(J—OJ) =] 1

(1.15)
B 1
CT(j—ay)

[ @0 (0 - 0)
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= F G =y )/ z— ) ‘G(’) (t) — ¢ (f)‘(lt (1.16)
(1.11) z _ i

L G — — ¢t Jj—oj—1 H_ R J—mp (p)‘_

= I —aj) (/1 (x ) a ) pn’ twi <.€1 .
1 @y (a1 (L.17)
T T(j— a;) (j—ay) " G '

2i—a . 1
< — " 000 R piP (p)1 — ).
“I'(j—a;+1) Pl (g n)

We proved that for any x € [—1, 1] we have

) 2i—aj 1
g o ) i—p (p)
I(D* 19) () — (D*_lqn) (r)’ < T a1 G oy & I)R,,n’ P (g 25 ;) . (1.18)
Hence it holds
D% = D% 2= R i~ Py (p) 1
_max |(Di2y9) (2) = (DiLin) (@) < TSR C A

(1.19)
) =0,1,...,p
Above we set DY, g (2) = g (x), D?_ ¢, () = g, (x),Vx € [-1,1], and ap = 0,
ie. [ag] =0.

Put
85 = wls<uf)<l ’ah () o (;1')| , J=h...k, (1.20)
and
1 k 9i—aj .
Ny = Rpwi (f(?)’ ;) 25.}.—[1 Gt 1)71_-7*7’ . (1.21)
j=h : :

L. Suppose, throughout [0, 1], ap () > @ > 0. Let Q,, (x), @ € [—1,1], be a real
polynomial of degree < n so that

7 23] ; LA Qi 5
Jmax DX (£ @)+, (B) ' 2") = (D2,Q0) (@)

(1.19) 9j—a B o 1
<= ' Rpoair ). 1.22
- I(j-a;+1) Pl T (f n) ( )

7=0,1,...,p.
In particular (j = 0) holds

max ‘ (f (x) + 1, (W)~ ;rh) — ()

—1<x<1

1
< Ry, (f(’”. _) S
n
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and
1
5 & nal]| <2 1y~L ! =P 5 (
s 17 0) = Qn )] < 1 ()" + Ry (1 7)
1 () 1 5 2i—aj .
=(h"Y " R p) — e R (o 2
( L ) P“‘)l (.f 7)) ‘; qJ l'\(7 o ﬂ"j + 1)"
—p, (¢ 1
+Ryn"Pwy | f T (1.24)
() 1 kg 51 . k 2j—ru 95
< w — i 1) §i— . 1
Ry (10,3 ) 07 (14007 L sy |- 029
i=h J
That is

max |f(z) — Q, (2)]

—1<r<l

k 9j—aj; 1

S Rp 14 (h!)_l ZSJF(J——(M 71k_pu)] (f(p). ;) s (1.26)

J=h

proving (1.10).
Here

k
L= Za_,— () [D:J_J .
i=h

and suppose, throughout [0,1], Lf > 0.
So over 0 < x < 1, using (1.12) to compute D}’ x"  (1.21) for 1, and (1.22),
we get

(l'+ l)h ap

ai ! (2) L(Qn (2)) = ay ' (2) L (f () + " h—op £ 1) (1.27)
- n
+3a;" (@) a; (@) [D,Qu (2) — D, f (@) — F2D2
J=h
(x + 1) 20— P 1
> P | R () —
ZM TG —ant 1) ;JF(J—O ) e
(J' + 1)’1—111, (.T + 1)’1—()1‘
o e =g | Uy 1.28
Inp (h—ap+1) = | B (h—ap+1) ( )
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(z+ )" —T(h—ar+1)
I T(h—on+1)

> |:1—F(h—('y1,+l)

T'(h—ap+1) :|20 (1.29)

Explanation: We know I' (1) = 1, ' (2) = 1, and I is convex and positive on (0, 00).
Here 0 < h—ap <land1<h—ap+1<2 ThusI'(h—ap +1) <1 and
1-T(h—ap+1)>0. (1.30)
Hence
L(Qn(x)) >0,z €[0.1]. (1.31)

II. Suppose, throughout [0,1], ayp (x) < 3 < 0. In this case let Q, (z), = €
[—1,1], be a real polynomial of degree < n such that

_max D27 (f @) = my ()" a") = (D22,Qu) (&) (1.32)
2i—a ; 1
Z . (p) — )
- F(j—u,——}-l)ﬁp“ i (f 'n) '

j=0,1,...,p.
In particular holds (j = 0)
1
=1 — il 9
—?l;;:xﬁl ’ (f (x) —mn,, (h!) ;l‘h> - Qn (.r)’ < Rpn™Pw, (f(’), ;) ; (1.33)

and

—1<z<1 n

max |f (z) — Qn ()| <, (B)) ™" + Ryn Pwy (f(l'). l)

(as before)

1 ) 9i—ay
< Ryw (f(m. —) nk—p (h!) ! Z . (1.34)

n = 'F/—nJ+1)
That is
_max |f(x) - Qn ()]
.. 9i—ay : 1
<Ry | 1+ () ;%F(J_—M n* P, (f“’). ;> , (1.35)

reproving (1.10).
Again suppose, throughout [0,1], Lf > 0.
Also if 0 < x < 1, then

(.1' + l)h—l)h

oy’ (2) L(@Qn (@) = o (@) L @) =t F gy

(1.36)

+3 0! (@) (2) [DIQn () = DELL S () + 35 (D24



