Mjat?eridls Degradation and Failures Series

Materials
and Failures
in MEMS

and NEMS

Edited by Atul Tiwari and Baldev Raj

/) Scrivener
| Publishing

e Jdon S el



Materials and Failures in
MEMS and NEMS

Edited by

Atul Tiwari and Baldev Raj

7z

Sévener

Publishing

WILEY



Copyright © 2015 by Scrivener Publishing LLC. All rights reserved.

Co-published by John Wiley & Sons, Inc. Hoboken, New Jersey, and Scrivener Publishing LLC, Salem, Massachusetts.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United
States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or
online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book,
they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and
specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created
or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable
for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

For more information about Scrivener products please visit www.scrivenerpublishing.com.
Cover design by Atul Tiwari and Russell Richardson
Library of Congress Cataloging-in-Publication Data:

Materials and failures in MEMS and NEMS / edited by Atul Tiwari and Baldev Raj.
1 online resource.

Includes bibliographical references and index.

Description based on print version record and CIP data provided by publisher; resource not viewed.

ISBN 978-1-119-08387-0 (pdf) -- ISBN 978-1-119-08386-3 (epub) -- ISBN 978-1-119-08360-3 (cloth : alk. paper)
1. Microelectromechanical systems--Design and construction. 2. Nanoelectromechanical systems--Design and
construction. I. Tiwari, Atul, editor. II. Raj, Baldey, 1947- editor.

TK7875

621.381--dc23
2015027730

ISBN 978-1-119-08360-3

Printed in the United States of America

10 987654321



Materials and Failures in
MEMS and NEMS




Scrivener Publishing
100 Cummings Center, Suite 541]
Beverly, MA 01915-6106

Materials Degradation and Failure Series
Studies and investigations on materials failure are critical aspects of science and engineering.
The failure analysis of existing materials and the development of new materials demands in-depth
understanding of the concepts and principles involved in the deterioration of materials
The Material’s Degradation and Failure series encourages the publication of titles that are
centered on understanding the failure in materials. Topics treating the kinetics and mechanism
of degradation of materials is of particular interest. Similarly, characterization techniques that
record macroscopic (e.g., tensile testing), microscopic (e.g., in-situ observation) and nanoscopic
(e.g., nanoindentation) damages in materials will be of interest. Modeling studies that cover failure
in materials will also be included in this series.

Series Editors: Atul Tiwari and Baldev Raj
Dr. Atul Tiwari, CChem
Director, R&D, Pantheon Chemicals
225 W. Deer Valley Road #4
Phoenix, AZ 85027 USA
Email: atulmrc@yahoo.com, atiwari@pantheonchemical.com

Dr. Baldev Raj, FTWAS, FNAE, FNA, FASc, FNASc
Director, National Institute of Advanced Studies
Indian Institute of Science Campus
Bangalore 560 012, India
Email: baldev.dr@gmail.com, baldev_dr@nias.iisc.ernet.in

Publishers at Scrivener
Martin Scrivener(martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)



Preface

Manufacturing, diagnosis and treatment of biospecies, agriculture, energy and infrastruc-
ture, governance, security, etc., need sensors and devices based on well-grounded concepts,
engineering and technology. Miniaturization demands new materials, designs and fabrica-
tion technologies. The decrease in the size and volume of devices has necessitated the incor-
poration of a high level of fabrication technologies. There is a priority need to address failures
in micro- and nanodevices.

The invention of Microelectromechanical Systems (MEMS) and Nanoelectromechanical
Systems (NEMS) fabrication technologies has revolutionized the science and engineering
industry. It is estimated that market prospects for MEMS and NEMS will increase rap-
idly to reach $200 billion in 2025. The key to the success of MEMS and NEMS will be the
development of technologies that can integrate multiple devices with electronics on a single
chip. Among the technologies available so far, the fabrication of MEMS and/or NEMS has
been predominately achieved by etching the polysilicon material. Novel materials and tech-
nologies are being explored to overcome the challenges in fabrication or manufacturing
processes. In order to meet the ever-increasing demands of MEMS and NEMS, enormous
amounts of research, applications and innovations have been explored and exploited. Most
of the relevant information originating from such efforts is being treated as confidential or
privileged, which seeds extensive barriers to the research, development and aspirational
demands of these technologies.

This book includes chapters written by eminent experts in the area of MEMS and
NEMS. The opening chapter of this book reviews various C-MEMS fabrication technol-
ogies involving patterning of polymeric precursors of carbon such as epoxy photoresists
and sol-gel polymers, followed by pyrolysis to generate glassy or semicrystalline carbon.
Another chapter discusses the origins of fault in such devices, related mathematical models
and utilization of filters in fault diagnosis. Also, the authors have illustrated the structure
of a multiple-model adaptive estimator and its application in fault diagnosis simulation.
Another chapter provides an overview of the design of MEMS heat exchangers such as heat
sinks, heat pipes and two-fluid heat exchangers. The formation of porous silicon devices
by elec-trochemical etching of silicon and the control over the porosity and pore size are
discussed in a separate chapter. The use of such porous silicon devices as biosensors is
thoroughly investigated by these contributors. Further, a chapter provides an overview on
MEMS and NEMS switches using Si-to-Si contact. An interesting chapter discusses the
design challenges during fab-rication and failure analysis of cMUT devices. Investigators
have compared the device fabrication by surface micromachining and wafer bonding tech-
niques. Moreover, failure analysis of cMUT using vari—ous materials characterization tech-
niques and their importance for successful device fabrica—tion are also investigated.

xiii



Xiv PREFACE

A successive chapter investigates an effective approach to solve inverse problems in
MEMS and NEMS. This chapter describes inverse problems in micro- and nanomechani-
cal resonators and also the stiction test of MEMS and NEMS. Further, there is a chapter in
the book dedicated to the control of ohmic RE-MEMS switches operating under different
actuation modes, such as single pulse, tailored pulse, and tailored-pulse optimization meth-
ods, based on Taguchi’s tech—nique of resistive damping; and the hybrid actuation mode,
which is a combination of the tailored pulse, the resistive damping, and Taguchi’s opti-
mization technique. Additional challenges involved in design methodologies, and avail-
able simulation packages to model and simulate MEMS devices are explored in a separate
chapter. To develop MEMS devices and to understand the inception of fabrication defects,
researchers have explored fabrication techniques such as surface micromachining and
bonding silicon to glass. The use of different characterization techniques, such as visual,
electrical and mechanical, for inspecting the defects in these devices has also been dem-
onstrated. An independent chapter systematically investigates the buckling behavior of a
typical micron-scale constantan-wire/polymer-substrate structure under electrical loading.
Another crucial chapter discusses many important aspects of microcantilever sensors such
as operation principles, fabrication of silicon and polymer microcantilevers, mechanical
and electrical characterization, readout principles, applications of microcantilever sensors
for vapor-phase chemical or gas detection, biosensing and agriculture applications; and
nanogenerators for energy harvesting. A chapter in the book elaborates the inherent chal-
lenges encountered in CMOS-MEMS along with the possibility of integration at board and
chip levels. This chapter also lists various circuit architectures being used in capacitance
detection along with a detailed comparison on their merits and demerits. The final chap-
ter proposes a mathematical model to determine strategies for preventive replacement and
inspection for MEMS that are subject to multiple dependent competing failure processes as
a result of degradation and/or shock loads.

We are confident that this book will constitute a large knowledge bank for students,
research scholars and engineers who are involved in the research, development and deploy-
ment of advanced MEMS and NEMS for a wide variety of applications. To the best of the
editors’ knowledge, such a book that addresses the developments and failures in these
advanced devices has not yet been available to readers. Comprehensive expertise is mapped
out and discussed in this book to advance the knowledge bank of readers in order to enable
precise control over dimensional stability, quality, reliability, productivity and life cycle
management of MEMS and NEMS.

The editors look forward to constructive suggestions and feedback for improving the
next edition of this book on this important, relatively young subject of increasing impor-
tance and relevance.

Wishing you a purposeful and wonderful reading experience.

Atul Tiwari, PhD
Baldev Raj, PhD
August 4, 2015
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1
Carbon as a MEMS Material

Amritha Rammohan* and Ashutosh Sharma

Department of Chemical Engineering, Indian Institute of Technology,
Kanpur, Uttar Pradesh, India

Abstract

Carbon has become a popular material in microelectromechanical (MEMS) applications
because of its versatile electrochemical and mechanical properties, as well as the numerous pre-
cursor materials and facile fabrication methods available. This review details various C-MEMS
fabrication technologies, most of which involve the patterning of polymeric precursors of car-
bon such as epoxy photoresists and sol-gel polymers followed by their pyrolysis to create glassy
or semicrystalline carbon pattern replicas. The structure and properties of glassy carbon, as well
as the pyrolysis process and concurrent shrinkage, are also discussed in detail, as these directly
affect the applicability of the carbon structures and devices. The integration of carbon structures
in MEMS devices by means of surface modification and the incorporation of additives and fill-
ers such as carbon nanotubes and carbon nanofibers to enhance the functional properties are
also discussed.

Keywords: Carbon, C-MEMS, pyrolysis, volumetric shrinkage, MEMS integration, lithography

1.1 Introduction

Carbon is one of the most versatile materials in the periodic table. Due to its ability to
form sp, sp?, and sp® hybridized covalent bonds with various elements including itself,
carbon-based compounds and materials are amongst the most adaptable materials
available to us. The ability of carbon to form bonds with itself is manifested in the form
of many allotropes of carbon including fullerenes, nanotubes, graphite, graphene, and
diamond. Even within these allotropes, despite being all made of carbon, the properties
such as electrical conductivity, hardness, and strength vary widely with allotrope due to
different microstructures in terms of crystallite size, long-range order, anisotropy;, efc.
[1]. Amorphous or glassy carbon, in particular, has a wide window of electrochemical
stability as well as high thermal conductivity and excellent biocompatibility, warrant-
ing its use in various electrochemical and biological applications [2]. Diamond-like
carbon or DLC, another form of carbon, has superior tribological properties and wear

*Corresponding author: ramritha@gmail.com

Atul Tiwari and Baldev Raj (eds.), Materials and Failures in MEMS and NEMS, (1-20)
© 2015 Scrivener Publishing LLC



2 MATERIALS AND FAILURES IN MEMS AND NEMS

resistance, and anisotropic carbon materials such as nanotubes and nanofibers can be
leveraged for their unique and anisotropic electromechanical properties as well [2-4].

When this versatility in functional properties is combined with appropriate micro/
nanofabrication techniques, carbon structures become highly viable as elements in micro
and nano electromechanical systems (MEMS/NEMS). In order to create micro- and
nanosized electromechanical structures such as actuators and microsensors from carbon,
appropriate robust and facile micro/nanofabrication techniques have to be adopted. The
methods to pattern carbon and its precursors into MEMS structures are divided, like
other microfabrication techniques, into top-down and bottom-up techniques. Top-down
techniques are subtractive processes such as reactive ion etching (RIE) and lithographic
patterning with photons, electrons, or ions. Bottom-up or additive processes include
sputtering, evaporation, and chemical vapor deposition (CVD) [5]. While top-down
techniques create deterministic patterns with good shape and size control, bottom-up
techniques result in increased functionality and have greater capability for three-dimen-
sional (3D) patterns. Self-assembled structures that are formed with very little external
guidance or direction also fall in the latter category of bottom-up techniques. Apart from
strictly top-down and bottom-up techniques, many fabrication techniques include a com-
bination of these two. For example, hierarchical structures can be achieved by top-down
patterning of large-scale structures and bottom-up patterning of smaller, 3D features. Soft
lithographic techniques such as micromolding and nanoimprinting are often considered
a third classification of microfabrication techniques and have also been used successfully
in the patterning of C-MEMS (Carbon MEMS) structures [6].

One process that facilitates the fabrication of amorphous or glassy carbon micro-
structures involves the pyrolysis of carbon-containing precursor molecules (usu-
ally polymers) that have been prefabricated into requisite micro/nanostructures
(Figure 1.1). Pyrolysis or carbonization is the method of heating carbon-containing
precursors to temperatures upward of 600 °C in an inert atmosphere such as nitrogen

T [ TOP DOWN ‘
‘ || $vgee FABRICATION
i | i oy A ORCATION.

BOTTOM UP
FABRICATION Pyrolysis
- . T>600°C Y
[CARBON PRECURSOR | | CARBON MEMS
| PATIERN | | STRUCTURE |

o

SOFT
LITHOGRAPHIC |

| FABRICATION |

Figure 1.1 Fabrication of Carbon MEMS structures using top-down, bottom-up and soft lithographic
techniques.



