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PREFACE

N the following work T have tried to write an elementary
clags-book on those parts of Dynamics of a Particle and
Rigid Dynamics which are usually read by Students attending
a course of lectures in Applied Mathematics for a Science or
Engineering Degree, and by Junior Students for Mathematical
Honours. Within the limits with which it professes to deal,
I hope it will be found to be fairly complete.

I assume that the Student has previously read some such
course &8 is included in my Elementary Dynamics., I also assume
that he possesses a fair working knowledge of Differential and
Integral Calculus; the Differential Equations, with which he
will meet, are solved in the Text, and in an Appendix he will
find & summary of the methods of solution of such’ equations.

In Rigid Dynamics I have chiefiy confined myself to two-
dimensional motion, and T have omitted all reference to moving
axes.

I have included in the book a large number of Examples,
mostly collected from University and College Examination
Papers; I have verified every question, and hope that there
will not be found a large number of serious errors.

For any corrections, or suggestions for improvement, I shall
be grateful. .

S. L. LONEY.

Rovar Horroway CoLLEGE,
Eneirrigrp GREEN, SURREY,
Ociober 23, 1909,

Solutions of the Examples have now been published.
December, 1928,
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CHAPTER 1

FUNDAMENTAL DEFINITIONS AND PRINCIPLES

1. The velotity of a point is the rate of its displacement,
so that, if P be its position at time ¢ and @ that at time £+ A%,

the limiting value of the quantity %%), as At is made very

small, is its velocity.

Since a displacement has both magnitude and direction,
the velocity possesses both also; the latter can therefore be
represented in magnitude and direction by a straight line, and
is hence called a vector quantity.

2. A point may have two velocities in different directions
at the same instant; they may be compounded into one
velocity by the following theorem known as the Parallelogram
of Velocities;

If @ moving point possess simultaneously velocities ~which are
represented 1n magnitude and direction by the two sides of a
parallelogram drawn from a point, they are equivalent to a
velocity which 1s represented in magnitude and direction by the
diagonal of the parellelogram passing through the point.

Thus two component velocities AB, AC are equivalent to
the resultant velocity AD, where 4D is the diagonal of the
parallelogram of which AB, AC are adjacent sides.

If BAC be a right angle and B4D =6, then AB=AD cos 6,
AC=A4Dsin6, and a velocity v aiong AD is equivalent to the
two component velocities vcos 6 along 4 B and vsin 8 aleng AC.

Triangle of Veloeities. If a point possess two velocities
completely represented (.e. represented in magnitude, direction
and sense) by two straight lines 4B and BC, their resultant is

L. D. 1



2 Dynamics of a Particle

completely represented by AC. For completing the parallelo-
gram ABCD, the velocities 4B, BC are equivalent to 4B, AD
whose resultant is 4 C.

Parallelopiped of Velocities. If a point possess three
velocities completely represented by three straight lines 04,
OB, OC their resultant is, by successive applications of the
parallelogram of velocities, completely represented by OD, the
diagonal of the parallelopiped of which 04, OB, OC are con-
terminous edges.

Similarly 04, OB and OC are the component velocities of 0D.

If OA, OB, and OC are mutually at right angles and u, v, w
are the velocities of the moving point along these directions, the
resultant velocity is ¥Nu*++*+w?* along a line whose direction
cosines are proportional to %, v, w and are thus equal to

. S : and —o
Vi T+ wt Yui+ o'+ uw? NVur+ ot + ot

Similarly, if 0D be a straight line whose direction cosines

referred to three mutually perpendicular lines 04, 0B, OC are

I, m, n, then a velocity ¥V along OD is equivalent to component
velocities IV, mV,nV along 0OA, OB, and OC respectively.

3. Change of Veloeity. Acceleration. If at any instant
the velocity of a moving point be represented by O4, and at
any subsequent instant by OB, and if the parallelogram OABC
be completed whose diagonal-is OB, then OC or AB represents
the velocity. which must be compounded with 04 to give OB,
i.e. it is the change in the velocity of the moving point.

Acceleration is the rate of change of velocity, d.e if 04,
OB represent the velocities at times ¢ and ¢+ At, then the

limiting value of %? (t.e. the limiting value of the ratio of the

change in the velocity to the change in the time), as Af becomes
indefinitely small, is the acceleration of the moving point. As
in the case of velocities, a moving point may possess simul-
taneously accelerations in different directions, and they may be
compounded into one by a theorem known as the Parallelogram
of Accelerations similar to the Parallelogram of Velocities.

As also in the case of velocities an acceleration may be
resolved into two component accelerations.



Fundamental Definitions and Principles 8

The results of Art. 2 are also true for accelerations as well
as velocities.

4 Relative Velocity. When the distance between two
moving points is altering, either in direction or in magnitude or
in both, each point is said to have a velocity relative to the
other,

Suppose the velocities of two moving points 4 and B to be
represented by the two lines 4P and BQ (which arc not
necessarily in the same plane), sc that in the unit of time the
pesitions of the points would change from 4 and B to P and Q.
Draw BR equal and parallel to AP. The velocity BQ is, by
the Triangle of Velocities, equivalent to the velocities BR, R@Q,
1.¢. the velocity of B is equivalent to the velocity of 4 together
with a velocity Q.

A

The velocity of B relative to 4 is thus represented by RQ.

Now the velocity RQ is equivalent to velocities RB and BQ
(by the Triangle of Velocities), t.6. to velocities completely
represented by BQ and PA.

Hence the velocity of B relative to A is obtasned by com-
pounding the absoluie velocity of B with a velocity equal and
opposite to that of A.

Conversely, since the velocity BQ is equivalent to the
velocities BR and RQ), v.e. to the velocity of 4 together with
the velocity of B relative to A4, therefore the wvelocity of any
pownt B 1s obtained by compounding together its velocity relative
to uny other point A and the velocity of A.

The same results are true for accelerations, since they also
are vector quantities and therefore follow the parallelogram law.

9. Angular velocity of a point whose motion is in -
one plane.

If a point P be in motion in a plane, and if O be a fixed
point and O« a fixed line in the plane, the rate of increase of

1-8



4 Dynamics of a Particle

the angle £0P per unit of time is called the angular velocity of
P sbout 0.
Hence, if at time ¢ the angle :
zOP be 8, the angular velocity \
. df s
about O is PR \Q
If @ be the position of the point

/,.‘l \:
P at time £ 4 Af, where Af is small, /
and v the velocity of the point ab i
time ¢, then
g
v t/
o] X

PQ
= Lt. A

If
2 POQ=A08, and OP =7, OQ =17+ Ar,

r(r+ Ar)sin A0 =2AP0Q=PQ .07,

where OY is the perpendicular on Q.
Hence, dividing by A¢, and proceeding to the limit when A¢
is very small, we have

then

240
s

where p is the perpendicular from O upon the tangent at P to
the path of the moving point.
Heance, if  be the angular velocity, we have 7w =v.p.

The angular acceleration is the rate at which the angular
velocity increases per unit of time, and

dt() dt( p)

Areal velocity. The areal velocity is, similarly, the rate at
which the area XOP increases per unit of time, where X is
the point in which the path of P meets Oz. It

area POQ - 1e2
'—At—' %T ¢ @,

=Lt.

6. Mass and Force. Maiter has been defined to be
“that which can be perceived by the senses” or “that which
can be acted upon by, or ean exert, force.” It is like time and
space a primary conception, and hence it is practically im-
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possible to give it a precise definition. A body is a portion of
matter bounded by surfaces.

A particle is a portion of matter which is indefinitely small
in all its dimensions. It is the physical correlative of a
geometrical point. A body which is incapable of any rotation,
or which moves without any rotation, may for the purposes of
Dynamices, be often treated ag a particle.

The mass of a body is the quantity of matter it contains,

A force is that which changes, or tends to change, the state
of rest, or uniform motion, of a body.

7. 1If to the same mass we apply forces in succession, and
they generate the same velocity in the same time, the forces
are said to be equal

If the same force be applied to two different magses, and if
it produce im them the same velocity in the same time, the
masses are said to be equal.

It is here assumed that it is possible to create forces of
.equal intensity on different occasions, eg. that the force
necessary to keep a given spiral spring stretched through the
same distance is always the same when other conditions are
unaltered,

Hence by applying the same force in succession we can
obtain a number of masses each equal to a standard unit of
mass.

8. DPractically, different units of mass are used under
different conditions and in different countries.

The British unit of mass is called the Imperial Pound, and
consists of a lump of platinum deposited in the Exchequer
Office.

The French, or Scientific, unit of mass is called a gramme,
and is the one-thousandth part of a certain quantity of platinum,
called a Kilogramme, which is deposited in the Archives,

One gramme = about 15432 grains
=-0022046 1b.

One Pound = 45359 grammes.

9. The units of length employed are, in, general, either a
foot or a centimetre,
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A centimetre is the one-hundredth part of a metre which

= 3937 inches
= 32809 ft. approximately.

The unit of time is a second. 86400 seconds are equal to a
mean solar day, which is the mean or average time taken by
the Earth to revolve once on its axis with regard to the Sun.

The system of units in which a centimetre, grammg, and
second are respectively the units of length, mass, and time is
called the c.a.s. system of units,

10. The density of a body, when uniform, is the mass of a
unit volume of the body, so that, if m is the mass of a volume
V of a body whose density is p, then m = Vp. When the
density is variable, its value at any point of the body is equal
to the limiting value of the ratio of the mass of a very small
portion of the body surrounding the point to the volume of
that portion, so that

p =Lt 31"'7, when V is taken to be indefinitely small,

The weight of a body at any place is the force with which
the earth attracts the body. The body is assumed to be of such
finite size, compared with the Earth, that the weights of its
component parts may be assumed to be in parallel directions.

If m be the mass and » the velocity of a particle, its
Momentum is mv and its Kinetic Energy is dm»% The former
is a vector quantity depending on the direction of the velocity.
The latter does not depend on this direction and such a quantity
is called a Scalar quantity.

11. Newton’s Laws of Motion.

Law I. Every body continues in its state of rest, or of
uniform motion in a straight line, except in so far as it be
compelled by impressed force to change that state.

Law IZ. The rate of change of momentum is proportional
to the impressed force, and takes place in the direction in which
the force acts. ' .

Law III. Tc every action there is an equal and opposite

reaction.
These laws were first formally enunciated by Newton in his

Principia which was published in the year 1686.
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12. If P be the force which in a particle of mass m
produces an acceleration f, then Law II states that

P= X‘%(m-v), where A is some consiant,

= Amf.

If the unit of force be so chosen that it shall in unit masg
produce unit acceleration, this becomes P = mf.
If the mass be not constant we must have, instead,

d
P= C-'l‘t (mu).
The unit of force, for- the Foot-Pound-Second system, is
called a Poundal, and that for the .G.s. system is called a Dyne.

13. The acceleration of a freely falling body at the Earth’s
surface is denoted by g, which has slightly different values at
different points. In feet-second umits the value of g varies
from 8209 to 3225 and in the C.a.8. system from 97810 to
98311. For the latitude of London these values are 32'2 and
981 very approximately, and in numerical calculations these are
the values generally assumed.

If W be the weight of a mass of one pound, the previous
article gives that

W =1.g poundals,
so that the weight of a 1b. = 32'2 poundals approximately.
So the weight of a gramme = 981 dynes nearly.

A poundal and a dyne are absolute units, since their values
are the same everywhere.

14. Since, by the Second Law, the change of motion pro-
duced by a force is in the direction in which the force acts, we
find the combined effect of a set of forces on the motion of a
particle by finding the effect of each force just as if the other
forces did not exist, and then compounding these effects. This
is the principle known as that of the Physical Independence of
Forces.

From this principle, combined with the Parallelogram of
Accelerations, we can easily deduce the Parallelogram of
Forces,
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15. Impulse of a force. Suppose that at time ¢ the
value of a force, whose direction is constant, i8 2, Then the

impulse of the ferce in tiwe 7 is defined  be ’( Pt
<0
From Art. 12 it follows that the impulse

-—f m-—dt-—[mv}

= the momentum generated in the direction
of the force in time 7.

Sometimes, as in the case of blows and impacts, we have to
deal with forces, which are very great and act for a very short
time, and we cannot measure the magnitude of the forces. We
measure the effect of such forces by the momentum each pro-
duces, or by its impulse during the time of its action.

16. Work. The work done by a force is equal to the
product of the force and the distance through which the point
of application is moved in the direction of the force, or, by
what is the same thing, the product of the element of distance
described by the point of application and the resolved part of
the force in the direction of this element. It therefore = [Pds,
where ds is the element of the path of the point of application
of the force during the description of which the force in the
direction of ds was P.

If X, Y, Z be the components of the force parallel to the’
axes when its point of application is (z, y, ), so that X =P iii':,
etc. then

[Xde+ Yay+ 2d0) = [(PEdot ...+ ..)

dz\* | rdy\* K (dz\?
= the work done by the force P.

The theoretical units of work are:a:Foot-Poundal and an
Erg. The former is the work done by a poundal during a dis-
placement of one foot in the direction of its action; the latter
is that done by a Dyne during a similar displacement of one cm.

One Foot-Poundal = 421390 Ergs nearly. One Foot-Pound
is the work done in raising one pound vertically through one foot.
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17. Power. The rate of work, or Power, of an agent is the
work that would be done by it in a unit of time.

The unit of power used by Engineers is a Horse-Power. An
agent is said to be working with one Horse-Power, or 1.p., when
it would raise 33,000 pounds through one foot per minute.

18. The Potential Energy of a body due to a given system
of forces is the work the system can do on the body as it passes
from its present configuration to some standard configuration,
usually called the zero position.

For example, since the attraction of the Earth (considered

- a8 a uniform sphere of radius @ and density p) is know~ to be
3

7. 4’"; P %’ at a distance z from the centre, the potential energy

of a unit particle at a distance y from the centre of the Earth,

(y>a) . i 5
B a B -n—'ypaf . s ___”)
_./,( 5 )dz 5 TYPU (a 7’

the surface of the earth being taken as the zero position.

19. TFrom the definitions of the following physical quantities
in terms of the units of mass, length, and time, it is clear that
sheir dimensions are as stated.

Dimensions in

Quantity Mass length Time
Volume Density 1 -3
Velocity 1 -1
Acceleration 1 -2
Force 1 1 -2
Momentum 1 1 -1
Impulse 1 1 -1
Kinetic Energy 1 2 —2
Power or Rate of Work 1 2 -8

Angular Velocity -1



CHAPTER II
MOTION IN A STRAIGHT LINE

20. Let the distance of a moving point P from a fixed
point O be z at any time & Let its distance similarly at time
t 4+ At be z + Az, so that PQ = Ax.

z

) Y

The velocity of P at time ¢
= Limit, when At =0, of %%

a3 Axr de
= Limit, when A¢=0, of—& gt
Hence the velocity v = %
Let the velocity of the moving point at time ¢+ A2 be
v+ A,
Then the acceleration of P at time ¢
= limit, when At = 0, of %’f
L
dt
_d
T dee

21. Motion in a straight line with constant accelera-
tion f.

Let = be the distance of the moving point at time ¢ from
a fized pont in the straight line,
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d*z
odicgi s SO 1).
Then 77 T s @)
Hence, on integration, v= %: = 4 cosiiimmrsionaned (2),

where A is an arbitrary constant.
Integrating again, we have
=4 0+ At + B .oeecrreacennnnnnn. (8),
where B is an arbitrary constant.

Again, on multiplying (1) by 2‘;—:, and integrating with
respect to ¢, we have

P (‘fi—f)’ YR, ),

where C is an arbitrary constant.

These three equations contain the solution of all questions
on motion in a straight line with constant acceleration. The
arbitrary constants 4, B, C are determined from ¢he initial
conditions.

Suppose for example that the particle started at a distance
g from a fixed point O on the straight line with velocity % in
a direction away from O, and suppose that the time ¢ is
reckoned from the instant of projection.

We then have that when ¢ =0, then v =« and & =a. Hence
the equations (2), (3), and (4) give

u=A, a=B0B, and w*=C+ 2fa.

Hence we have v=u+ft,
z—a=ut+ 33
and ' =u? -+ 2f (2 — a),

the three standard equations of Elementary Dynamies.

22. A particle moves ¥n a straight line OA starting from rest
at A and moving with an acceleration which is always directed
towards O and varies as the distance from O; to find the motion.

Let # be the distance OP of the particle from O at any
time ¢; and let the acceleration at this distance be uz.

The equation of motion is then

:%if R AN SR S, (1).
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[We have a negative sign on the right-hand side because

Z‘:’? is the acceleration in the direction of z increasing, .. in
the direction OP; whilst uz is the acceleration towards O,

ie. in the direction PO.]

O+
>

A P 0

wlultiplying by 2 i and integrating, we have

di
dx\2
If OA be a, then %=0 when z=a, so that 0 = — ua®+ O,
/dz)?
and kﬁ) =u(a* - 2%).
o 3—':=—‘\/;_4\/a’—a:’ .................. (2).

[The negative sign is put on the right-hand side because
the velocity is clearly negative so long as OP is positive and P
is moving towards O.]

Hence, on integration,

t«/ﬂ=—f

dz z
——— =cos™! — 4 O},
Vai - a? a

where 0 =cos™ g +C, te C=0,

if the time be measured from the instant when the particle
was abt A4.
v 2=aco8Vub ceieeiirinienann... 3).

When the particle arrives at O, « is zero; and then, by (2), the
velocity = —a+/u. The particle thus passes through O and
immediately the acceleration alters its direction and tends to
diminish the velocity; also the velocity is destroyed on the
left-hand ‘side of O as rapidly as it was produced on the right-
hand side ; hence the particle comes to rest at a point A’ such
that OA and OA’ are equal. It then retraces its path, passes
throngh 0, and again is instantaneously at rest at A. The whole



