Tunable Micro-optics

Hans Zappe and Claudia Duppé

Tunable Micro-optics

Edited by

HANS ZAPPE

University of Freiburg

CLAUDIA DUPPÉ

University of Freiburg

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107032453

© Cambridge University Press 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Zappe, Hans

Tunable micro-optics / Hans Zappe, University of Freiburg, Claudia Duppé, University of Freiburg.

pages cm

Includes bibliographical references and index.

ISBN 978-1-107-03245-3 (hardback)

1. Tunable microlenses. 2. Optics, Adaptive. 3. Micro-optics.

I. Duppé, Claudia. II. Title.

TA1660.5.Z37 2016

621.36-dc23

2015028154

ISBN 978-1-107-03245-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Tunable Micro-optics

Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts, and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices, and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterization, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fiber telecommunications, *Tunable Micro-optics* equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realization of new types of optical systems. This is an essential resource for engineers in industry and academia, and advanced students working on optical systems design.

Hans Zappe is the Gisela and Erwin Sick Chair of Micro-optics at the University of Freiburg, and an internationally recognized teacher and researcher in micro-optics. He has twenty-five years' experience working on optical microsystems, integrated optics, and semiconductor lasers and has previously authored three textbooks.

Claudia Duppé was Administrative Program Manager of the DFG Priority Program "Active Micro-optics" at the University of Freiburg. She holds a PhD in New Zealand literature and has focussed professionally on academic communication and science management. She is presently Head of Communication and Networking at the Catholic University of Applied Sciences Freiburg.

Contributors

Chapter 1

Hans Zappe

Department of Microsystems Engineering, University of Freiburg, Germany

Chapter 2

Robert Brunner

Applied Optics, Ernst Abbe University of Applied Sciences, Jena, Germany

Erik Förster

Applied Optics, Ernst Abbe University of Applied Sciences, Jena, Germany

Chapter 3

Wolfgang Mönch

Technische Hochschule Nürnberg Georg Simon Ohm, Nürnberg, Germany

Chapter 4

David Dickensheets

Department of Electrical and Computer Engineering, Montana State University, Bozeman, MT, USA

Chapter 5

Yen-Sheng Lu

Institute of Electronics Engineering, National Tsing Hua University, Taiwan

J. Andrew Yeh

Institute of Nanoengineering and Microsystems, National Tsing Hua University, Taiwan

Chapter 6

Philipp Müller

Department of Microsystems Engineering, University of Freiburg, Germany

Chapter 7

Peter Liebetraut

Department of Microsystems Engineering, University of Freiburg, Germany

Sebastian Petsch

Department of Microsystems Engineering, University of Freiburg, Germany

Hans Zappe

Department of Microsystems Engineering, University of Freiburg, Germany

Chapter 8

Michael Jetter

Institut für Halbleiteroptik und Funktionelle Grenzflächen, Universität Stuttgart, Germany

Peter Michler

Institut für Halbleiteroptik und Funktionelle Grenzflächen, Universität Stuttgart, Germany

Wolfgang Osten

Institut für Technische Optik, Universität Stuttgart, Germany

Michael Rutloh

Universität Potsdam, Germany

Frederik Schaal

Institut für Technische Optik, Universität Stuttgart, Germany

Joachim Stumpe

Fraunhofer IAP, Universität Potsdam, Germany

Susanne Weidenfeld

Institut für Halbleiteroptik und Funktionelle Grenzflächen, Universität Stuttgart, Germany

Chapter 9

Oliver Ambacher

Fraunhofer Institute for Applied Solid State Physics, and Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany

Martin Hoffmann

Technische Universität Ilmenau, Fachgebiet Mikromechanische Systeme, Ilmenau, Germany

Fabian Knöbber

Fraunhofer Institute for Applied Solid State Physics, and Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany

Vadim Lebedev

Fraunhofer Institute for Applied Solid State Physics, Freiburg, Germany

Contributors

Steffen Leopold

Technische Universität Ilmenau, Fachgebiet Mikromechanische Systeme, Ilmenau, Germany

Daniel Pätz

Technische Universität Ilmenau, Fachgebiet Technische Optik, Ilmenau, Germany

Stefan Sinzinger

Technische Universität Ilmenau, Fachgebiet Technische Optik, Ilmenau, Germany

Verena Zürbig

Fraunhofer Institute for Applied Solid State Physics, and Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany

Chapter 10

Jan Draheim

Department of Microsystems Engineering, University of Freiburg, Germany

Ulrike Wallrabe

Department of Microsystems Engineering, University of Freiburg, Germany

Chapter 11

Heidi Ottevaere

Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Brussels, Belgium

Lien Smeesters

Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Brussels, Belgium

Hugo Thienpont

Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Brussels, Belgium

Chapter 12

Olav Solgaard

Department of Electrical Engineering, Stanford University, USA

Xuan Wu

Department of Electrical Engineering, Stanford University, USA

Chapter 13

Changho Chong

Santec Corporation, Japan

Keiji Isamoto

Santec Corporation, Japan

Hiroshi Toshiyoshi

Research Center for Advanced Science and Technology, The University of Tokyo, Japan

Chapter 14

Sebastian Petsch

Department of Microsystems Engineering, University of Freiburg, Germany

Richard Rix

Institute for Organic Chemistry, University of Mainz, Germany

Stefan Schuhladen

Department of Microsystems Engineering, University of Freiburg, Germany

Hans Zappe

Department of Microsystems Engineering, University of Freiburg, Germany

Rudolf Zentel

Institute for Organic Chemistry, University of Mainz, Germany

Chapter 15

Oliver Ambacher

Fraunhofer Institute for Applied Solid State Physics, and Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany

Tobias Deutschmann

University of Kaiserslautern, Department of Physics, Kaiserslautern, Germany

Martin Hoffmann

Technische Universität Ilmenau, Fachgebiet Technische Optik, Ilmenau, Germany

Vadim Lebedev

Fraunhofer Institute for Applied Solid State Physics, Freiburg, Germany

Steffen Leopold

Technische Universität Ilmenau, Fachgebiet Mikromechanische Systeme, Ilmenau, Germany

Egbert Oesterschulze

University of Kaiserslautern, Department of Physics, Kaiserslautern, Germany

Daniel Pätz

Technische Universität Ilmenau, Fachgebiet Technische Optik, Ilmenau, Germany

Stefan Sinzinger

Technische Universität Ilmenau, Fachgebiet Technische Optik, Ilmenau, Germany

Contributors

Verena Zürbig

Fraunhofer Institute for Applied Solid State Physics, and Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany

Chapter 16

Mohammad Abdo

Department of Microsystems Engineering, University of Freiburg, Germany **Kaustubh Baneriee**

Department of Microsystems Engineering, University of Freiburg, Germany

Patrick Bohnert

Applied Optics, Ernst Abbe University of Applied Sciences, Jena, Germany

Robert Brunner

Applied Optics, Ernst Abbe University of Applied Sciences, Jena, Germany **Erik Förster**

Applied Optics, Ernst Abbe University of Applied Sciences, Jena, Germany Jan G. Korvink

Department of Microsystems Engineering, University of Freiburg, Germany **Benjamin Ryba**

Applied Optics, Ernst Abbe University of Applied Sciences, Jena, Germany **Stefan Schuhladen**

Department of Microsystems Engineering, University of Freiburg, Germany

Moritz Stürmer

Department of Microsystems Engineering, University of Freiburg, Germany Ulrike Wallrabe

Department of Microsystems Engineering, University of Freiburg, Germany

Chapter 17

Ben Bockwinkel

University of Kaiserslautern, Department of Physics, Kaiserslautern, Germany **Bernhard Bramlage**

Fraunhofer Institute for Ceramic Technologies and Systems, Dresden, Germany Dörthe Ernst

Fraunhofer Institute for Ceramic Technologies and Systems, Dresden, Germany **Henning Fouckhardt**

University of Kaiserslautern, Department of Physics, Kaiserslautern, Germany

Sylvia Gebhardt

Fraunhofer Institute for Ceramic Technologies and Systems, Dresden, Germany Carina Heisel

University of Kaiserslautern, Department of Physics, Kaiserslautern, Germany **Christina Kimmle**

University of Kaiserslautern, Department of Physics, Kaiserslautern, Germany

Alexander Oberdörster

Fraunhofer Institute for Applied Optics and Precision Engineering, Germany **Dominic Palm**

University of Kaiserslautern, Department of Physics, Kaiserslautern, Germany Felix Paries

University of Kaiserslautern, Department of Physics, Kaiserslautern, Germany **Johannes Strassner**

University of Kaiserslautern, Department of Physics, Kaiserslautern, Germany **Andreas Tünnermann**

Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Germany

Frank Wippermann

Fraunhofer Institute for Applied Optics and Precision Engineering, Germany

Acronyms

2D two-dimensional 3D three-dimensional AA acrylic acid

AC alternating current
AFM atomic force microscope

AlN aluminum nitride

AOSLO adaptive optics scanning laser ophthalmoscope

ARC anti-reflective coating
BHF buffered hydrofluoric acid

BLU backlighting unit BOX buried oxide

CAD computer aided design

CASSI coded aperture snapshot spectral imager

CCD charged-coupled device CE counter electrode

CMOS complementary metal oxide silicon

CT computerized tomography
CTE coefficient of thermal expansion

CTIS computed tomography imaging spectrometer

CVD chemical vapor deposition
DBR distributed Bragg reflector

DC direct current DEFOC defocus

DI de-ionized (water)
DLL dielectric liquid lens

DMAEMA 2-dimethylaminoethyl methacrylate

DMD digital mirror device
DNA deoxyribonucleic acid
DOE diffractive optical elements

DOF depth of field

DRIE deep reactive ion etching EAP electroactive polymer

EC electrochromic

ECX equiconvex EM electromagnetic

EWOD electrowetting-on-dielectrics

FIB focused ion beam
FCC face centered cubic
FD-OCT Fourier-domain OCT
FEM finite element method
FLC ferroelectric liquid crystal

FOV field of view

FP Fabry-Pérot (interferometer) FWHM full width at half maximum

GLV grating light valve

GO-GMA glycidylmethacrylate-functionalized graphene oxide

GRIN graded index

HCP hexagonal close-packed

IC integrated circuit

IFT interfacial tension

IHTFP rude MIT colloquialism

IOL intra-ocular lens IPA isopropyl alcohol

IR infrared

ITO indium tin oxide I2C inter-integrated circuit

LC liquid crystal

LCA longitudinal chromatic aberration

LCD liquid crystal display LCE liquid crystal elastomer

LCOS-SLM liquid crystal on silicon spatial light modulators

LDV laser Doppler vibrometry LED light emitting diodes

LOC lab-on-a-chip

LPCVD low pressure chemical vapor deposition

LTCC low temperature cofired ceramics

MEMS micro-electro-mechanical systems

MOVPE metal-organic vapor-phase epitaxy

MTF modulation transfer function
MZ Mach-Zehnder (interferometer)

NA numerical aperture

NCD nanocrystalline diamond

NIPAAm N-isopropylacrylamide

NMR nuclear magnetic resonance

OASLM optically addressed spatial light modulators

OCT optical coherence tomography
OLED organic light emitting diodes

Acronyms XXV

OT optical transmission
OTF optical transfer function
PAC photo addressable cell
PBS polarizing beam splitter

PC polycarbonate

PCB printed circuit board PDMS polydimethylsiloxane

PEDOT poly-3, 4-ethylenedioxythiophene

PEEK polyetheretherketone PLA polylactic acid

PMMA polymethylmethacrylate PNIPAAm poly(N-isopropylacrylamide)

PSF point spread function

PSI phase shifting interferometry

PV peak-valley

PZT lead zirconate titanate
R&D research and development
RCWA rigorous coupled wave analysis

RIE reactive ion etching
RMS root mean square
ROC radius of curvature
RPG resonant periodic gain
SA spherical aberration
SAM self-assembled monolayers
SD-OCT spectral-domain OCT

SEM scanning electron microscope SLM spatial light modulators SMA shape-memory alloy

SOA semiconductor optical amplifier

SOI silicon-on-insulator SS-OCT swept-source OCT

 $\begin{array}{ll} {\rm SXGA} & {\rm super \ extended \ graphics \ array} \\ {\mu}{\rm TAS} & {\rm micro \ total \ analysis \ system} \\ {\rm TCL} & {\rm three-phase \ contact \ line} \\ {\rm TCO} & {\rm transparent \ conductive \ oxide} \\ \end{array}$

TD-OCT time-domain OCT
TE transverse electric

TF tetrafoil

THF tetrahydrofuran
TM transverse magnetic

TMAH tetra-methyl ammonium hydroxide

TOC thermo-optic coefficient USB universal serial bus

UV ultraviolet

VB valence band

VASE variable angle spectral ellipsometry

VCM voice coil motors

VCSEL vertical-cavity surface-emitting laser

VOA variable optical attenuators VDM wavelength division multiplex

WE working electrode

WLI white light interferometry

WLIM white light interference microscopy