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There is a difference between knowing something and
understanding it. Those who “know” make good Jeopardy contestants
and those who “understand’ become the creative people—engineers,
scientists, professors, active business people, and others—who create

the most for society. We honor those latter people.



No man can reveal to you aught but that which already
lies half asleep in the dawning of your knowledge.
If he (the teacher) is wise he does not bid you to enter the house
of his wisdom, but leads you to the threshold of your mind.
The astronomer may speak to you of his understanding of space,
but he cannot give you his understanding.
And he who is versed in the science of numbers can tell of the
regions of weight and measures, but he cannot conduct you hither.

For the vision of one man lends not its wings to another man.
Gibran, The Prophet

The reward to the educator lies in his pride in his students’
accomplishments. The richness of that reward is the satisfaction
in knowing the frontiers of knowledge have been extended.
D.E. Othmer



Preface

For the fifth edition of Combustion, the approach taken of providing students and
practicing professionals with the fundamental physical and chemical principles of
combustion has not changed from the previous editions of the book. The emphasis
remains on clarity of concepts and on elaborating upon the physical insights essen-
tial to understanding. It is hoped that the fifth edition of Combustion continues to
stimulate the reader to think, learn on their own, and empower them to make use
of the material and understandings gained in their future research and development
endeavors.

The fifth edition of Combustion is similar in format to the fourth edition.
However, there are new sections and additions, and many brief insertions that are
the core of important modifications. New to this edition are sections on the combus-
tion kinetics and low-temperature chemistry of biofuels, catalytic combustion, the
combustion of nanomaterials, chemical looping, and the mixture fraction concept.
Updated appendices and additional problems are at the end of chapters. In addition,
small, important modifications have been inserted throughout the text to give greater
understanding to many elements of combustion. This new material and other major
additions are self-evident in the listings in the Table of Contents.

As with the fourth edition of Combustion, special thanks go to Dr. Chris Shaddix
of Sandia Livermore, who made major contributions to Chapter 9 with respect to
coal combustion considerations. Our thanks go to Mary Newby of Penn State,
who performed the typing of the complete book and who with insight offered a
great deal of general help. We also wish to thank our Acquisitions Editor, Tiffany
Gasbarrini, and Senior Editorial Project Manager, Kattie Washington, for
convincing us to undertake this edition of Combustion and for seeing this endeavor
through.

Irvin Glassman
Richard A. Yetter
Nick G. Glumac
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CHAPTER

Chemical
thermodynamics and
flame temperatures

1.1 INTRODUCTION

The parameters essential for the evaluation of combustion systems are the equilib-
rium product temperature and composition. If all the heat evolved in the reaction
is employed solely to raise the product temperature, this temperature is called the
adiabatic flame temperature. Because of the importance of the temperature and
gas composition in combustion considerations, it is appropriate to review those
aspects of the field of chemical thermodynamics that deal with these subjects.

1.2 HEATS OF REACTION AND FORMATION

All chemical reactions are accompanied either by an absorption or evolution of
energy, which usually manifests itself as heat. It is possible to determine this
amount of heat—and hence the temperature and product composition—from
very basic principles. Spectroscopic data and statistical calculations permit one
to determine the internal energy of a substance. The internal energy of a given
substance is found to be dependent upon its temperature, pressure, and state
and is independent of the means by which the state is attained. Likewise the
change in internal energy, AE, of a system that results from any physical change
or chemical reaction depends only on the initial and final state of the system.
Regardless of whether the energy is evolved as heat or work, the total change in
internal energy will be the same.

If a flow reaction proceeds with negligible changes in kinetic energy and poten-
tial energy and involves no form of work beyond that required for the flow, the heat
added is equal to the increase of enthalpy of the system

0 = AH

where Q is the heat added and H is the enthalpy. For a nonflow reaction proceeding
at constant pressure, the heat added is also equal to the gain in enthalpy

0, = AH

Combustion. http:/dx.doi.org/10.1016/BY78-0-12-407913-7.00001-3
Copyright © 2015 Elsevier Inc. All rights reserved.
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CHAPTER 1 Chemical thermodynamics and flame temperatures

and if heat is evolved,
O, = —AH

Most thermochemical calculations are made for closed thermodynamic systems,
and the stoichiometry is most conveniently represented in terms of the molar quan-
tities. In dealing with compressible flow problems in which it is essential to work
with open thermodynamic systems, it is best to employ mass quantities. Throughout
this text uppercase symbols will be used for molar quantities and lowercase symbols
for mass quantities.

One of the most important thermodynamic facts to know about a given chemical
reaction is the change in energy or heat content associated with the reacticn at some
specified temperature, where each of the reactants and products is in an appropriate
standard state. This change is known either as the enthalpy of reaction or as the heat
of reaction at the specified temperature.

The standard state means that for each state a reference state of the aggregate
exists. For gases, the thermodynamic standard reference state is the ideal gaseous
state at atmospheric pressure at each temperature. The ideal gaseous state is the
case of isolated molecules which give no interactions and which obey the equation
of state of a perfect gas. The standard reference state for pure liquids and solids at a
given temperature is the real state of the substance at a pressure of 1 atm. As
discussed in Chapter 9, understanding this definition of the standard reference state
is very important when considering the case of high-temperature combustion in
which the product composition contains a substantial mole fraction of a condensed
phase, such as a metal oxide.

The thermodynamic symbol that represents the property of the substance in
the standard state at a given temperature is written, for example, as Hy, E7,
etc., where the ‘degree sign’ superscript ° specifies the standard state and the
subscript 7, the specific temperature. Statistical mechanics calculations actually
permit the determination of E7 — Ej, which is the energy content at a given tem-

perature referenced to the energy content at 0 K. For one mole in the ideal gaseous
state

PV =RT (1.1)
H° =E°+ (PV)" = E° +RT (1.2)

which at 0 K reduces to
Hy = E; (1.3)

Thus the heat content at any temperature referred to the heat or energy content at 0 K
is known and

(H° — Hy) = (E° — Eg) + RT = (E° — Ej) + PV (1.4)

The value (E° — Ej) is determined from spectroscopic information and is
actually the energy in the internal (rotational, vibrational, and electronic) and



1.2 Heats of Reaction and Formation 3
' |
) l AHr, | @)
T | T1
t Path A }
+ l
m | Path B I o
= I TO
} AHr, |
Reactants Products

FIGURE 1.1
Heats of reactions at different base temperatures.

external (translational) degrees of freedom of the molecule. Enthalpy (H° — H) has
meaning only when there is a group of molecules, a mole for instance; it is thus the
ability of a group of molecules with internal energy to do PV work. In this sense,
then, a single molecule can have internal energy, but not enthalpy. As stated, the
use of the lowercase symbol will signify values on a mass basis. Since flame tem-
peratures are calculated for a closed thermodynamic system of fixed mass, and molar
conservation is not required, working on a molar basis is most convenient. In flame
propagation or reacting flows through nozzles, mass is conserved as it crosses sys-
tem boundaries; thus when these systems are considered, the per-unit mass basis of
the thermochemical properties is used for a convenient solution.

From the definition of the heat of reaction, @), will depend on the temperature Tat
which the reaction and product enthalpies are evaluated. The heat of reaction at one
temperature 7)) can be related to that at another temperature 7. Consider the reaction
configuration shown in Figure 1.1. According to the First Law of Thermodynamics,
the changes in energy that proceed from reactants at temperature 7 to products at
temperature 7, by either path A or path B must be the same. Path A raises the re-
actants from temperature T to 7'}, and reacts at 7. Path B reacts at T and raises the
products from 7 to T;. This energy equality, which relates the heats of reaction at
the two different temperatures, is written as

S | (H5 — H) — (H3, —H3)] |+ Aty

J react

= AH, +4 > m{(H?, —H3) - (H;n “HS)L

i prod

(1.5)

where n specifies the number of moles of the ith product or jth reactant. Any phase
changes can be included in the heat content terms. Thus, by knowing the difference
in energy content at the different temperatures for the products and reactants, it is
possible to determine the heat of reaction at one temperature from the heat of
reaction at another.
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If the heats of reaction at a given temperature are known for two separate
reactions, the heat of reaction of a third reaction at the same temperature may be
determined by simple algebraic addition. This statement is the Law of Heat Summa-
tion. For example, reactions (1.6) and (1.7) can be carried out conveniently in a
calorimeter at constant pressure:

Cgraphite +02(g) W’ COx(g), Op = +393.52kJ (1.6)
1
CO(g) + EOZ(g) T COx(g), Qp=+283.0kJ (1.7

Subtracting these two reactions, one obtains

|

Cgraphile +502(g) W CO(g), Qp = +110.52kJ (1.8)

Since some of the carbon would burn to CO;, and not solely to CO, it is difficult to
determine calorimetrically the heat released by reaction (1.8).

It is, of course, not necessary to have an extensive list of heats of reaction to
determine the heat absorbed or evolved in every possible chemical reaction. A
more convenient and logical procedure is to list the standard heats of formation of
chemical substances. The standard heat of formation is the enthalpy of o substance
in its standard state referred to its elements in their standard states at the same
temperature. From this definition it is obvious that heats of formation of the elements
in their standard states are zero.

The value of the heat of formation of a given substance from its elements may be
the result of the determination of the heat of one reaction. Thus, from the calori-
metric reaction for burning carbon to CO; (Eqn (1.6)), it is possible to write the
heat of formation of carbon dioxide at 298 K as

(AHY) 05 0, = —393.52 kJ/mol

The superscript to the heat of formation symbol AH{ represents the standard
state, and the subscript number represents the base or reference temperature.
From the example for the Law of Heat Summation, it is apparent that the heat of
formation of carbon monoxide from Eqn (1.8) is

(AHY)

sos.co = —110.52 kI /mol

It is evident that, by judicious choice, the number of reactions that must be measured
calorimetrically will be about the same as the number of substances whose heats of
formation are to be determined.

The logical consequence of the preceding discussion is that, given the heats of
formation of the substances comprising any particular reaction, one can directly
determine the heat of reaction or heat evolved at the reference temperature T,
most generally 7T»9g, as follows:

M= Y w8 - S s, =0, (9)

i prod J react



1.2 Heats of Reaction and Formation L]

Extensive tables of standard heats of formation are available, but they are not all at
the same reference temperature. The most convenient are the compilations known as
the JANAF [1] and NBS Tables [2], both of which use 298 K as the reference
temperature and are now available as the NIST-JANAF Thermochemical Tables
(http://kinetics.nist.gov/janaf/). Table 1.1 lists some values of the heat of formation
taken from the JANAF Thermochemical Tables. Actual JANAF tables are repro-
duced in Appendix A. These tables, which represent only a small selection from
the JANAF volume, were chosen as those commonly used in combustion and to
aid in solving the problem sets throughout this book. Note that, although the devel-
opments throughout this book take the reference state as 298 K, the JANAF Tables
also list AHy for all temperatures.

When the products are measured at a temperature 7, different from the
reference temperature 7j, and the reactants enter the reaction system at a temper-
ature T}, different from the reference temperature, the heat of reaction becomes

A = 5 m[{(H3, — Hy) — (H}, — HE)} + (AH7)y, |

i prod i

— 3 mi[{(Hgy — H) — (7, — H3)} + (AHp), | (11O)

J react 4

= —Qp(evolved)

The reactants in most systems are considered to enter at the standard reference tem-
perature 298 K. Consequently, the enthalpy terms in the braces for the reactants
disappear. The JANAF Tables tabulate, as a putative convenience, (Hj — H3gg)
instead of (Hj — Hy). This type of tabulation is unfortunate since the reactants
for systems using cryogenic fuels and oxidizers, such as those used in rockets,
can enter the system at temperatures lower than the reference temperature. Indeed,
the fuel and oxidizer individually could enter at different temperatures. Thus the
summation in Eqn (1.10) is handled most conveniently by realizing that 7}, may
vary with the substance j.

The values of heats of formation reported in Table 1.1 are ordered so that the
largest positive values of the heats of formation per mole are the highest, and those
with negative heats of formation are the lowest. In fact, this table is similar to a po-
tential energy chart. As species at the top react to form species at the bottom, heat is
released, and an exothermic system exists. Even a species that has a negative heat of
formation can react to form products of still lower negative heats of formation spe-
cies, thereby releasing heat. Since some fuels that have negative heats of formation
form many moles of product species having negative heats of formation, the heat
release in such cases can be large. Equation (1.9) shows this result clearly. Indeed,
the first summation in Eqn (1.9) is generally much greater than the second. Thus the
characteristic of the reacting species or the fuel that significantly determines the heat
release is its chemical composition and not necessarily its molar heat of formation.



