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PREFACE

The subject of this monograph is the mathematical formalism of non-
relativistic quantum dynamics. The structure and foundations of this for-
malism are examined in detail with emphasis on fundamental principles
rather than concrete applications. Still, our approach is slanted towards
application to the domains of molecular physics and quantum chemistry.
Our scope is thus limited to nonrelativistic wave mechanics and semiclassical
radiation theory. We stop short of more advanced developments including
the Dirac equation, quantum electrodynamics, formal scattering theory,
density matrices and diagram techniques. These latter topics are, in fact,
quite adequately covered in a number of current textbooks. I might suggest,
however, that this monograph will prove of some value in bridging the gap
between elementary wave mechanics and these more advanced techniques.

We begin, in Chapter 1, with a brief survey of some relevant topics in
classical mechanics : Hamiltonian dynamics, Poisson brackets and Hamilton—
Jacobi theory. Chapter 2 covers classical electrodynamics on the level of the
Maxwell-Lorentz equations, emphasizing those aspects which pertain to
radiative transitions in atoms and molecules. Special relativity is also
developed as an outgrowth of electrodynamics. In subsequent chapters,
points of connection between quantum-dynamical formalism and these
classical theories are analyzed in detail. Chapter 3 reviews the postulates
and general principles of quantum mechanics, including a few fine points
which are usually glossed over in both elementary and advanced treatments.
Chapter 4 is about time-dependent quantum mechanics, mainly the time-
dependent Schridinger equation. In chapter 5, the formalism of quantum
dynamics is applied to the free particle. Some discussion is also given on
continuum eigenstates and on the basic ideas of potential scattering. Chapter
6 is about Green'’s furrctions, both as mathematical tools used elsewhere and,
in their own right, as the basis of high-powered computational formalism.
Chapter 7 concerns transitions among quantum states and their treatment
by time-dependent perturbation theory. In the final chapter we consider
first the semiclassical theory of electromagnetic interactions. Our line of

development then culminates in a fairly extensive discussion of radiative
\%
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transitions in atomic and molecular systems. Two appendices give some
‘required material on the Dirac deltafunction and Fourier analysis.

I should like to acknowledge the assistance of Dr. Eugene Lopata in
critically reading parts of the manuscript. The comments of Professor Roy
McWeeny and Professor David Craig were also extremely helpful.

S.M.B.
Ann Arbor, Michigan
July 1974
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1

Classical Dynamics*

In this chapter we shall briefly survey those parts of classical dynamics which
have particular relevance to quantum theory. Principal among these are
Hamiltonian formalism, equations of motion in Poisson bracket form and
Hamilton—Jacobi theory.

1.1 Lagrange’s Equations

It is assumed that the reader is familiar with the derivation of Lagrange’s
equations starting with Newton’s equations of motion. We shall outline here
an alternative derivation based on Hamilton’s principle.

Let the dynamical structure of a classical system be characterized by some
function L(g, 4, t) of the n generalized coordinates g,, n generalized velocities
g, (i = 1...n)and time t. The kinematical behaviour of the system is described
by a trajectory, i.e. a set of functional relations

q;, = q1), i=1...n (1.1.1)
consistent with the constraints imposed on the system. The task is now to
relate kinematics with dynamics. Assume that one can parametrically repre-
sent every conceivable trajectory connecting configuration ¢’ ... ¢'* at an
initial time ¢, with configuration ¢{"’ ... g'" at a later time t,. One of these
paths will represent the actual motion of the system between times ¢, and t,.
Hamilton’s principle is the postulate that the time integral of L(q, ¢, t) assumes
a stationary value along the actual trajectory, i.e.,

131
5J L(g, g, t)dt = 0, (1.1.2)

to

in which J represents variation of the parameters determining a trajectory.

In terms of differential variations in the g, and 4, at each point in time, one

can also write nom /oL L
—9q, + — 44, =0.

f’ ) (6q %t 5 q,)dt 0 (1.1.3)

o i=1 i

* For a more complete treatment of the subject, there is no finer reference than H. Goldstein,
Classical Mechanics (Addison-Wesley, Cambridge, Massachusetts, 1951).
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2 FOUNDATIONS OF QUANTUM DYNAMICS
Noting that

. d
04, = aéqi (1.1.4)

the second summation can be integrated by parts:

oL d oL & d (0L
J: . dt(a q)dt = 6q.6q‘:| —J“ dt(@ )5 ;dt. (1.1.5)

i to

The boundary terms vanish since, by supposmon, the initial and final con-
figurations of the system are specified, i.e.

8¢ =0, ¢V =0. (1.1.6)

Hamilton’s principle thereby reduces to

ty n oL d /oL
J:,, .-;{aqi dt(a )}5 (A = 9. (1.1.7)

Now if the dg, can be arbitrarily varied independently of one another (holo-
nomic system), each curly bracket must individually vanish. We arrive thus
at Lagrange’s equations of motion

—— ———=0, i=1..n. (1.1.8)

Solution of these equations, consistent with a set of specified initial con-
ditions, say, ¢! and ¢{” (i = 1...n), suffices in principle to determine each
generalized coordinate as a function of time (eqn 1.1.1).

We have yet however to specify the functional form of the Lagrangian
L(g, g, t). It is suggestive to consider the motion of a particlein a conservatlve
field of force. By Newton’s second law,

mt = —VV(r), (1.19)

noting that conservative forces can be represented as the negative gradient

of a potential energy. In cartesian coordinates, the equations of motion take
the form

v

X, + — =0, i=1,2,3. 1.1.10

m; + = i ( )

It is easily seen that these are isomorphous with (1.1.8) provided that one
identifies

L(r,§) = imi? — V(r). (1.1.11)

In the great majority of cases, the Lagrangian is simply the difference
between the kinetic and poten:ial energies

L=T—V (1.1.12)
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Should there arise some ambiguity in defining T or V, however, one has

recourse to the fundamental significance of the Lagrangian as that function

which establishes (1.1.8) as the equations of motion governing the system.
Consider, for example, the equation for a damped harmonic oscillator:

mi + n% + kx = 0. (1.1.13)

Because of the velocity-dependent dissipative force —nx, the Lagrangian
cannot be represented in the form (1.1.12). It is easily verified however that
(1.1.13) can be derived from a time-dependent Lagrangiant

L(x, x,1) = e"(imx? — 1kx?), y = n/m. (1.1.14)

1.2 Hamiltonian Dynamics

For conservative systems, in which the Lagrangian contains no explicit
time dependence, i.e.

JdL/ot = 0, (1.2.1)

an important conservation principle applies. To demonstrate this, multiply
each Lagrange equation (1.1.8) by the corresponding ¢, and sum:

.dJL | oL
Note now that
& Z 8L L+ cL 123
ar ~ 2 G it ag (123)
and
ﬂ_ _Z,déL oL 124
dt &g, arog tag?) (124)
Subtracting (1.2.3) from (1.2.4) and substituting into (1.2.2), we find
d oL

t For systems subject to forces which are not entirely conservative, Lagrange’s equations can be
generalized to

———=Q, i=l..mn (1.1.8)

which Q, is the dissipative force associated with the ith degree of freedom. Thus, (L1 13)can
alternatwe]y be represented using

L =imi? — lkx?, Q= —px. (1.1.14)
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Thus the Hamiltonian function
oL
=) 4 - 1.2.6

is constant in time for a conservative system.

When L contains explicit time dependence, then H will as well. Equation
(1.2.6) represents, in fact, a Legendre transformation in which the g, are
displaced as fundamental variables by the quantities dL/d4,. This is made
explicit by taking the total differential of (1.2.6), noting that L is a function
of the g;, 4, and ¢:

oL oL oL oL oL
=Y<¢.d|l==)+==dg,; — —dq, + =——dg,p — —dt. 2.
=2 {q‘ ‘ («wi) "3, dq‘} 2 {6qi R d"‘} ad 127
The terms in dg, cancel, thus indicating that the new function H depends on
the variables g, 0E/dq; and t.

The new variables

p, = 8L/d4, (1.2.8)

are known as generalized momenta. In cartesian coordinates, (1.2.8) reduces
to the usual definition of linear momentum. For example, with (1.1.11),

p, = % mx ' (1.29)
The corresponding pairs of generalized coordinates and momenta g,, p, are
known as conjugate variables. Their product invariably has dimension mi?/t,
known as action. Thus, length and linear momentum, angle and angular
momentum, time and energy are the common pairs of conjugate variables.
In quantum theory, the fundamental constant # has dimensions of action
while each pair of conjugate variables is governed by an uncertainty relation
(cf Section 3.6A).
One can now write

H(q’ D, t) = Zplq. = L(q’ q’ t) (1210)

and, using (1.2.8) in (1.2.7),

dH =} (4,dp, — p,dq) — g—lt“dt. (1.2.11)
Evidently,
0H/dp, = 4;, 0H/0q;= —p, i=1..n (12.12)
and

O0H/ot = —0dL/ét. (1.2.13)
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Equations (1.2.12) are Hamilton’s equatio'ns of motion. Usually the second of
these is equivalent Newton’s second law in the form

b, = F, (1.2.14)

while the first relates p, to the generalized velocity. Equations (1.2.12) are also
known, because of their theoretical importance, as canonical equations of
motion. The g,, p, entering mto these équations are correspondingly denoted
canonical variables.

Comparison of (1.1.8) with (1.2.13) shows that a mechanical problem can be
formulated either as a set of n second-order differential equations (Lagrange’s)
or as a set of 2n first-order differential equations (Hamilton’s). In either case,
2n initial or boundary conditions are required for a complete solution.

Except under some rather exotic circumstances, the Hamiltonian function
represents the total energy of a systemf{. Consider a Lagrangian in the form

L=T-V,-V, (1.2.15)

in which the kinetic energy is a homogéneous quadratic function of the
generalized velocities which does not involve the time explicitly, i.e.

T=4Y a(a)d, (1.2.16)
iJj

while the potential energy, which may depend on ¢, contains (at most) a
homogeneous linear dependence on generalized velocities, i.e.

Vo=Vola0h V=Y bfa 04 (1.2.17)

By Euler’s theorem on homogeneous functions, we have

oT
= 2T and =V. 1.2.18
X, qu (12.18)

t For the damped harmonic motion represented by the Lagrangian (1.1.14), the general pre-
scription for constructing the Hamiltonian gives

aL
P=7z =e" mx (1.2.21)
and thus
k 2
H(x,p,t)=e ";—+ er 2—" (1222)

The sum of the kinetic and potential energies is however
E = jmx? + 1kx? (1.2.23)

so that H = e”E—one of those pathological instarnces in which H # E. If, however, one defines
the Lagrangian in accordance with (1.1.8") and (1.1.14'), a Hamiltonian equal to (1.2.23) is
obtained.
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Putting (1.2.15) into (1.2.6) and making use of (1.2.18), we find that
H=T+V,=E (1.2.19)

(V, having cancelled out). Under the very general circumstances considered,
the Hamiltonian represents the sum of the ordinary kinetic and potential
energies, hence the total energy of the system. When V, is time dependent,
then E, as defined, will also be time dependent. When V}, is independent of
time, then, in accordance with (1.2.5), the energy of the system is conserved.

For a particle in a conservative field, application of (1.2.9) and (1.2.10) to the
Lagrangian (1.1.11) leads to the Hamiltonian function

2
He,p) = ”E + V() (1.2.20)

This is representative of a large number of instances in which the Hamiltonian
can be constructed simply by expressing the energy as a function of generalized
coordinates and momenta.

The Hamiltonian formulation of mechanics outlined in this section is
entirely equivalent in physical content to the Lagrangian formulation. In
fact, Hamilton’s equations (1.2.13) often reduce to the very same differential
equations as Lagrange’s equations (1.1.8). Hamiltonian dynamics none-
theless possess a number of conceptual advantages. One is the physical
significance of the Hamiltonian function itself. A second attractive feature is
the near symmetry in the roles of generalized coordinates and momenta.
These can accordingly be employed with greater flexibility than the variables
in Lagrangian formalism. In consequence, Hamiltonian dynamics plays an
important role in the formulation of both quantum theory and statistical
mechanics.

1.3 Equations of Motion for Dynamical Variables

Let A(g, p,t) represent some physical property of the dynamical system
expressed as a function of canonical variables and time. As the system evolves
in conformity with Hamilton’s equations, each dynamical variable A will
correspondingly vary with time in accordance with

d4 04 X (oA, o4,
d—t - E + ,-gl (a_q, qi + a l‘> - (1.3.1)
By substituting for 4, and p, from (1.2.13) we obtain
d4 04 " (0AOH 0AO0H
- EEE-aa) e

It is useful to define the Poisson bracket of two dynamical variables 4 and
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B as follows:

{4,B} = }.

i=1

dq; 0p;  0q; Op;
It can be shown that this quantity is invariant to alternative choices of the
canonical variables in a given system. Since Poisson brackets provide an
important link to quantum mechanics, we shall summarize some of their
properties. The following identities are readily demonstrated:

5 (aA 6B 0B aA). (1.33)

(4,4} =0 (1.3.4)
{A,B} = —{B, A} (1.3.5)
{A,B+ C} ={A4,B} + {A,C} (1.3.6)
{A% B} = 2A4{A, B} (1.3.7)
{4, BC} = C{A, B} + B{4,C} (133
and
{{4,B},C} + {{B,C}, A} + {{C, 4},B} = 0. (1.3.9)

(Jacobi’s identity)

When A4 and B are canonical variables themselves, we find

{959} =0, {p,p} =0  alli,j (1.3.10)
but

{gsp;} =4, (1.3.11)

Returning now to the equation of motion (1.3.2), we recognize that it can
be written 44 B
TRl + {4, H}. . (1.3.12)
This points up that, besides its significance as the energy, the Hamiltonian
also governs the time development of all dynamical variables. When applied
to the canonical variables, (1.3.12) reproduces Hamilton’s equations in
Poisson bracket form:

4, = {q, H} (1.3.13)
and
pi = {p, H}. (13.14)
When A4 is the Hamiltonian itself, then, because of (1.3.4),
dH O0H
—_—= (1.3.15)

dt ot
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Thus H(g, p) with no explicit dependence on time will maintain a constant
value even as the coordinates and momenta vary with time in the course of
the system’s motion. This is consistent, of course, with the conservation of
energy in a conservative system.

A dynamical variable for which dA/dt = 0 is known as a constant of the
motion. According to (1.3.12), a constant of the motion must fulfil two
conditions:

0A/ot =0 and {A,H} =0. (13.16)

1.4 Hamilton—Jacobi Theory

We shall present an ad rem derivation of the Hamilton—Jacobi equation which
does not explicitly develop its connection with either canonical transforma-
tions or variational principles. Hamilton’s principal function (sometimes
called, rather loosely, the action integral) is defined as

13
5.4, 1) EI L(¢,q,t)dr. (1.4.1)
0

It is presumed that the integrand describes an actual trajectory of the system
during the time interval O to ¢, such that S = 0, in accord with Hamilton’s
principle. The trajectory is characterized by the set of functional relations

4, =q(t), 4 =4), i=1..n (142)

obtained by solution of the equations of motion subject to the initial and
final conditions

(0) (0)

" =q", qt) =q, i=1..n (1.4.3)
Incorporating (1.4.3) very explicitly into (1.4.2), we can write
g =@ qa6t), & =dgqnr), i=1..n  (144)

and correspondingly,

S(q, 47, t) = J L[q'(q.4°,t, 1), 4'(q,q'¥,t, 1), '] dr". (1.4.5)
0
Now
as . [‘ %, (0L &q; 6L6q>
dr. 1.4.6
el (aq, 3g; " 24, 0q (14.6)

Noting that
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and ;

oL _d oL _
o, diag, D

s ['d aq,

koY (s 24 gy

aq, .[o de <; P aqi) a
dq

= 2P ] Z( 4 (0)6‘1(10)>
j 70q; |, j P,-aqi P oq; )

0S/og, = p, i=1..n.

we can write

Thus

Analogously, it is shown that
08/0q” = —p®, i=1..n

Consider now the time derivative of S:

' _(dLdq 8L g
i%f:L(q,q,t)+J 2(—,i+ : i)d:'.
0 i

0q; 0t 04, ot

The last integral can analogously be transformed to

oq; |
Zp ! az]
aq)\ _ (g gq_
o),  \ot) . \aq,),
oq°
. (0) (0) i
Z( : i aq )

¢S
%=L~ qu —H.

Applying the identity

this becomes

Thus

(1.4.7)

(14.8)

(1.4.9)

(1.4.10)

(1.4.11)

(1.4.12)

(1.4.13)

(1.4.14)

(1.4.15)



