FREE RADICALS in BIOLOGICAL SYSTEMS

EDITORS

M. S. BLOIS, JR.

H. W. BROWN

R. M. LEMMON

R. O. LINDBLOM

M. WEISSBLUTH

ACADEMIC PRESS · New York and London

Free Radicals Biological Systems

PROCEEDINGS OF A SYMPOSIUM HELD AT STANFORD UNIVERSITY, MARCH, 1960

EDITORS

M. S. BLOIS, JR. H. W. BROWN

R. M. LEMMON

R. O. LINDBLOM M. WEISSBLUTH

1961

ACADEMIC PRESS · New York and London

Copyright ©, 1961, by Academic Press Inc.

ALL RIGHTS RESERVED

NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM,
BY PHOTOSTAT, MICROFILM, OR ANY OTHER MEANS,
WITHOUT WRITTEN PERMISSION FROM THE PUBLISHERS,
EXCEPT THAT REPRODUCTION IN WHOLE OR
IN PART IS PERMITTED FOR ANY PURPOSE OF
THE UNITED STATES GOVERNMENT.

ACADEMIC PRESS INC. 111 FIFTH AVENUE NEW YORK 3, N. Y.

United Kingdom Edition
Published by
ACADEMIC PRESS INC. (LONDON) Ltd.
17 OLD QUEEN STREET, LONDON S. W. 1

Library of Congress Catalog Card Number: 60-16982

CONTRIBUTORS

- B. T. Allen, Physics Department, University College of North Staffordshire, Keele, England
- L. G. Augenstine, Division of Biology and Medicine, U.S. Atomic Energy Commission, Washington, D. C.
- Helmut Beinert, Institute for Enzyme Research, University of Wisconsin, Madison, Wisconsin
- Lewis Bicking, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania
- M. S. Blois, Jr., Biophysics Laboratory, W. W. Hansen Laboratory of Physics, Stanford University, Stanford, California
- Harold C. Box, Biophysics Department, Roswell Park Memorial Institute, Buffalo, New York
- Ludwig Brand, Department of Chemistry, Indiana University, Bloomington, Indiana 1
- R. C. Bray, Chester Beatty Research Institute, Institute of Cancer Research, Royal Cancer Hospital, London, England
- ARTHUR S. BRILL, The Eldridge Reeves Johnson Foundation for Medical Physics, University of Pennsylvania, Philadelphia, Pennsylvania²
- H. W. Brown, Biophysics Laboratory, W. W. Hansen Laboratory of Physics, Stanford University, Stanford, California
- M. Calvin, Radiation Laboratory and Department of Chemistry, University of California, Berkeley, California
- J. G. Carter, Physics Department, Vanderbilt University, Nashville, Tennessee
- L. A. CARTER, Radiation Laboratory and Department of Chemistry, University of California, Berkeley, California
- Britton Chance, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania
- FRICIS DRAVNIEKS, School of Chemistry, University of Minnesota, Minneapolis, Minnesota
- Anders Ehrenberg, Department of Biochemistry, Nobel Medical Institute, Stockholm, Sweden
- C. F. Ehret, Division of Biological and Medical Research, Argonne National Laboratory, Argonne, Illinois
- ¹ Present address: Graduate Department of Biochemistry, Brandeis University, Waltham, Massachusetts.
- ² Present address: Laboratory of Electron Microscopy, Department of Engineering Physics, Cornell University, Ithaca, New York.
 - ³ Present address: 1809 Holbrook, Ponca City, Oklahoma.

- Harold G. Freund, Biophysics Department, Roswell Park Memorial Institute, Buffalo, New York
- Q. H. Gibson, Department of Biochemistry, University of Sheffield, Sheffield, England
- Walter Gordy, Department of Physics, Duke University, Durham, North Carolina
- Melvin W. Hanna, Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California
- Thormod Henriksen, Norsk Hydro's Institute for Cancer Research, The Norwegian Radium Hospital, Norway
- D. J. E. Ingram, Physics Department, University College of North Staffordshire, Keele, England
- W. Köhnlein, Institute of Radiobiology, Nuclear Research Center Karlsruhe, Karlsruhe, Germany
- Victor Legallais, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania
- Kenneth Lilga, Biophysics Department, Roswell Park Memorial Institute, Buffalo, New York
- Robert O. Lindblom, Lawrence Radiation Laboratory, University of California, Berkeley, California 4
- HARDEN M. McConnell, Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California
- Henry R. Mahler, Department of Chemistry, Indiana University, Bloomington, Indiana
- J. E. Maling, Biophysics Laboratory, W. W. Hansen Laboratory of Physics, Stanford University, Stanford, California
- B. G. Malmström, Institute of Biochemistry, University of Uppsala, Uppsala, Sweden
- H. S. Mason, Department of Biochemistry, University of Oregon Medical School, Portland, Oregon
- V. Massey, Department of Biochemistry, University of Sheffield, Sheffield, England
- Adolf Müller, Institute of Radiobiology, Nuclear Research Center Karlsruhe, Karlsruhe, Germany
- Takao Nakamura, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania ⁵
- ⁴ Present address: The Dow Chemical Company, P.O. Box 351, Pittsburg, California.
- ⁵ Present address: Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Tokyo, Japan.

- D. R. Nelson, Physics Department, St. John's University, Collegeville, Minnesota ⁶
- G. E. Pake, Department of Physics, Stanford University, Stanford, California
- R. Pettersson, Institute of Biochemistry, University of Uppsala, Uppsala, Sweden
- L. H. Piette, Instrument Division, Varian Associates, Palo Alto, California
- Н. Ронцт, Max Planck-Institut für Biophysik, Frankfurt a. М., Germany
- E. L. Powers, Division of Biological and Medical Research, Argonne National Laboratory, Argonne, Illinois
- B. Rajewsky, Max Planck-Institut für Biophysik, Frankfurt a. M., Germany
- M. L. Randolph, Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- A. Redhardt, Max Planck-Institut f
 ür Biophysik, Frankfurt a. M., Germany
- David C. Reitz, School of Chemistry, University of Minnesota, Minneapolis, Minnesota
- Harvey N. Rexroad, Department of Physics, Duke University, Durham, North Carolina ⁷
- RICHARD H. SANDS, Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan
- Leonida Santamaria, Division of Biological and Medical Research, Argonne National Laboratory, Argonne, Illinois ⁸
- Bernard Smaller, Solid State Science Division, Argonne National Laboratory, Argonne, Illinois
- Douglas E. Smith, Division of Biological and Medical Research, Argonne National Laboratory, Argonne, Illinois
- P. B. Sogo, Radiation Laboratory, University of California, Berkeley, California ⁹
- T. VÄNNGÅRD, Institute of Physics, University of Uppsala, Uppsala, Sweden
- ⁶ Present address: Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- 7 Present address: Department of Physics, West Virginia University, Morgantown, West Virginia.
- 8 Present address: Institute of General Pathology, University of Milan, Milan, Italy.
- ⁹ Present address: Physics Department, San Diego State College, San Diego, California.

- C. Veeger, Department of Biochemistry, University of Sheffield, Sheffield, England 10
- John E. Wertz, School of Chemistry, University of Minnesota, Minneapolis, Minnesota
- 1). H. Whiffen, Basic Physics Division, National Physical Laboratory, Teddington, England
- I. Yamazaki, University of Oregon Medical School, Portland, Oregon
- II. P. Yockey, Research and Development, Aerojet-General Nucleonics, San Ramon, California
- K. G. Zimmer, Institute of Radiobiology, Nuclear Research Center Karlsruhe, Karlsruhe, Germany
- ¹⁰ Present address: Department of Physiological Chemistry, University of Amsterdam, Amsterdam, The Netherlands.

PARTICIPANTS IN THE SYMPOSIUM.

GAIL D. ADAMS

University of California Medical School, San Francisco, California

BARRY T. ALLEN

University College of North Staffordshire, Keele, England

MARY BELLE ALLEN

Kaiser Foundation Research Institute, Richmond, California

WESTON ANDERSON

Varian Associates, Palo Alto, California

G. M. ANDROES

University of California, Berkeley, California

LEROY G. AUGENSTINE

United States Atomic Energy Commission, Washington, D. C.

EDWIN D. BECKER

National Institutes of Health Bethesda, Maryland

HELMUT BEINERT

University of Wisconsin, Madison, Wisconsin

R. G. BENNETT

E. I. du Pont de Nemours Co., Wilmington, Delaware

ROBERT L. BERGER

Utah State University, Logan, Utah

M. S. Blois, Jr.

Stanford University, Stanford, California

HAROLD C. BOX

Roswell Park Memorial Institute, Buffalo, New York

ARTHUR S. BRILL

Cornell University, Ithaca, New York

HARMON W. BROWN

Stanford University, Stanford, California

TOR BRUSTAD

University of California, Berkeley. California

ALAN C. BURTON

University of Western Ontario, London, Canada

MELVIN CALVIN

University of California, Berkeley, California

BRITTON CHANCE

University of Pennsylvania, Philadelphia, Pennsylvania

E. A. EDELSACK

Office of Naval Research, San Francisco, California

ANDERS EHRENBERG

Nobel Medical Institute, Stockholm, Sweden

C. S. FRENCH

Carnegie Institution of Washington, Stanford, California

JACOB H. GOLDSTEIN

Emory University, Atlanta, Georgia

WALTER GORDY

Duke University, Durham, North Carolina

MELVIN W. HANNA

California Institute of Technology, Pasadena, California

LLOYD L. INGRAHAM

University of California, Davis, California

IRVING ISENBERG

Marine Biological Laboratory, Woods Hole, Mass.

ROBERT C. JONES

Varian Associates, Palo Alto, California

MARTIN D. KAMEN

Brandeis University, Waltham, Mass.

WALTER L. KOLTUN

National Institutes of Health, Berkeley, California

ARTHUR KORNBERG

Stanford University, Stanford, California

RICHARD M. LEMMON
University of California, Berkeley,
California

ROBERT O. LINDBLOM

Dow Chemical Co., Pittsburg,
California

VICTORIA LYNCH
Menlo Park, California

HENRY R. MAHLER
Indiana University, Bloomington,
Indiana

John E. Maling Stanford University, Stanford, California

Howard S. Mason
University of Oregon Medical
School. Portland. Oregon

VINCENT MASSEY

University of Sheffield, Sheffield,
England

Frank R. Mayo
Stanford Research Institute, Menlo
Park, California

Andrew McLachlan
California Institute of Technology,
Pasadena, California

Adolf Müller Kernreactor, Bau- und Betriebs-Gesellschaft M.B.H., Karlsruhe, Germany

Takao Nakamura University of Pennsylvania, Philadelphia, Pennsylvania

George E. Pake Stanford University, Stanford, California

L. H. Piette
Varian Associates, Palo Alto,
California

E. L. Powers

Argonne National Laboratory,

Argonne, Illinois

Malcolm L. Randolph
Oak Ridge National Laboratory, Oak
Ridge, Tennessee

Albrecht Redhardt

Max Planck Institute for Biophysics,
Frankfurt, a.M. Germany

Francis J. Reithel National Science Foundation, Washington, D. C.

RICHARD H. SANDS University of Michigan, Ann Arbor, Michigan

Bernard Smaller

Argonne National Laboratory,

Argonne, Illinois

Douglas E. Smith
Argonne National Laboratory,
Argonne, Illinois

James H. C. Smith Carnegie Institution of Washington, Stanford, California

Power B. Sogo San Diego State College, San Diego, California

LINA TASKOVICH
Stanford University, Stanford,
California

Tore Vänngård

Institute of Physics, University of
Uppsala, Uppsala, Sweden

John E. Wertz University of Minnesota, Minneapolis, Minnesota

David H. Whiffen
National Physical Laboratory,
Teddington, England

Robley C. Williams
University of California, Berkeley,
California

JOHN J. WINDLE U. S. Department of Agriculture, Albany, California

I. Yamazaki
University of Oregon Medical School,
Portland, Oregon

PREFACE

This Symposium on Free Radicals in Biological Systems was held at Stanford University March 21–23, 1960, for the purpose of bringing together those professionally diverse scientists who were actively conducting research in this field. The reports of these individuals are contained in this volume.

General interest in this subject has been growing steadily for several years, and especially since electron paramagnetic resonance techniques and equipment have become readily available. By the summer of 1959, it appeared timely to review the progress that had been recently made and to assess the future. An inquiry as to the merits of such a meeting was therefore made at that time to a sampling of individuals known to be active in this field and was met with enthusiasm and cooperation.

In preparing the program, it was hoped that the speculative years were perhaps largely past, and that we would hear of concrete results. We were not disappointed. As short a time as seven years ago a question frequently heard was ". . . do free radicals really occur in biological systems?" This has been answered affirmatively, and the emphasis is now on specific mechanisms in which free radicals are involved, physicochemical properties of individual radical species, means by which radical side reactions are avoided in vivo, mechanisms of free radical production, stabilization, and termination, etc. One conclusion seems inescapable: the near future will see a continuing increase in our understanding of this important phase of molecular biology.

The Symposium was made possible by the cooperation of the many contributors and participants, and the invaluable assistance of the Biophysics and Biophysical Chemistry Study Section under Research Grant RG-5048 from the Division of Research Grants of the National Institutes of Health, Public Health Service, United States Department of Health, Education and Welfare.

Special notes of gratitude are due Dr. R. H. Bolt, formerly Principal Consultant to the Study Section, for encouragement and advice during the formative stages of the Symposium, to Professor Robley Williams, Chairman, and Dr. W. L. Koltun, Principal Consultant, of the Study Section for their personal interest and assistance, and Professor Melvin Calvin, Dr. R. M. Lemmon, Dr. R. O. Lindblom, and Dr. M. Weissbluth

for their participation on the organizing committee. Special mention is made of Mr. E. B. Rickansrud and Miss Ruth McConnell of the W. W. Hansen Laboratories of Physics, whose energy and thoroughness helped foster the illusion that organizing a symposium is a simple task!

M. S. Blois, Jr.

Biophysics Laboratory
W. W. Hansen Laboratories of Physics
Stanford University
July, 1960

Free Radicals in Biological Systems

ERRATUM

Page 7, first line: the asterisk refers to the second paragraph from the bottom on page 14, reading, "The strength of Michaelis' convictions"

CONTENTS

CONTRIBUTORS	(*)
PARTICIPANTS IN THE SYMPOSIUM	ix
Preface	хi
1. Free Radicals and Enzyme-Substrate Compounds	
A Tribute to Leonor Michaelis	1
BRITTON CHANCE	
I. Introduction	Ī
II. The Enzyme-Substrate Compounds	
III. Summary	1-1
References	1.5
2. Semiquinone Formation of Flavins and Flavoproteins	17
HELMUT BEINERT and RICHARD H. SANDS	
I. Early Investigations on Flavin Semiquinones	17
II. Studies on Semiquinone Formation by Optical Methods	19
III. Studies on Semiquinone Formation by Paramagnetic Resonance	
Spectroscopy	37
References	51
2 The Detection of Feet Destinal Lettern distriction Distriction	
3. The Detection of Free-Radical Intermediates in Biochemical	
Reactions by Their Magnetic Susceptibility	53
I. General Considerations	54
II. The Measurement of Magnetic Susceptibility	58
III. Methods for Deducing the Presence of Free Radicals in Systems	
Which Contain Other Reacting Magnetic Species	63
IV. Free Radicals in Biochemical Reactions	66
References	74
4. Intermediates in the Catalytic Action of Lipoyl Dehydrogenase	
	75
(Diaphorase)	10
I. Introduction	75
II. Experimental	76
III. Discussion	87
References	90
* Ol	
5. Observation and Interpretation of Paramagnetic Resonances:	50.00
A Review	91
G. E. Pake	
I. Introduction	
II. Optimizing the Signal-to-Noise Ratio	92

XIV	CONTENTS

	III. Observable Pr	operties of	the :	Para	mag	netio	Re	sona	nce			ы		96
	IV. Conclusion												ï	98
	References					5.			i.	*	*			99
6.	Flow Apparatus													101
	Britton	CHANCE, I	LEW	is B	ICK	ING,	an	d Vı	СТО	R L	EGAI	LAIS	S	
	I. Introduction	4 9 9		, (a)	91						161	4		101
	II. Design of the			-	*	*		*					į	103
	III. Future Devel	opments .		15										111
	No. 4	n k ==			*	×	ě	1					7	111
7.	A Double Cavit	y for Prec	isio	n M	easi	urer	nen	ts o	f R	adio	eal (Con		
		n + 1												113
	W Körr	NLEIN and	Δ	Mii	TTTT			1						

	I. Introduction													113
	II. Apparatus .													114
	III. Performance	* *											Ř	115
	References	* * *	9.		*	#	ø	*	*	*	*	×	8	116
8.	Precision g-Valu	ie Measure	emer	nts o	on F	'ree	Ra	dica	ls o	f B	iolo	gica	1	
	Interest		-								1.00		2	117
	M. S. BL	lois, Jr., H	I. W	. B	ROW	N, 8	and	J. 1	E. N	IAL	ING		ē.	
	I. Introduction		(4)	À	3		.6.	(g)	ĕ		\sim	30	Ŷ	117
	II. Experimental									.5			*	118
	III. Experimental			(0.)			(4)				×	or .		119
	IV. Discussion											×	4.	128
	V. Summary	9 V V		(6)	*	*	9			2		9.		130
	References					٠	•		٠	٠		90	*	130
9.	Paramagnetic R	esonance	of I	ong	Po	lye	ne]	Rad	ical	S .				133
	MELVIN	W. HANNA	an	d H	ARD	EN	M.	Mc	Con	INE	LL			
	I. Polyenes in E													134
	II. The Electronic													135
	III. Spin Distribut										1			137
	IV. The Use of Se													201
	Spectra .							aiiia g	511001	0 10	COOL			138
	V. Analysis of th								rinh.	marli	noth			100
	Radicals and													141
	References													146
	References		٠	•	,	÷		90		*	3	*		140
10.	Thermoluminesc											cids	3	149
	L. G. Au	GENSTINE,	J. (G. C	CART	ER,	D.	R.	NEL	SON	Γ,			
		Yockey												
	I. Introduction													149
	II. Experimental			3									1	151
	ii. Experimental	1 100cuuico	.2	4		*	.7							

CONTE	NTS				xv
III. Results and Discussion	k e e		A A		152 156
11. Attempted Demonstration of Fre	e Radical	Intern	nediate	s in	
Reactions Catalyzed by Pyridir HENRY R. MAHLER and LUI	oproteins				157
					157
II. Attempted Demonstration of Free					
Linked Alcohol Dehydrogenase					160
III. Formation of Radicals in a Mod	el System,	2	ž – ž	8 8	163
References		× ×	(f)		167
40.00					
12. On the Process of Oxidation of Hy	droquinon	e by L	accase	× 9	169
TAKAO NAKAMURA					
I. Introduction				× 1	169
II. Experimental		E 2	9	8 8	170
III. Results		* *			173
IV. Discussion		7			181
** ~	RT 81 70				182
					182
13. Electron Spin Resonance Studies	of Autoxid	ation o	f 3,4-d	ihv-	
droxyphenylalanine	*				183
James E. W C.	Davage - J	To a succ	Darra		100
JOHN E. WERTZ, DAVID C.			DRAVN	IEKS	No.
				197	183
1			4	Tell 4	185
III. Experimental Results	8 9	8	9 9	8. 9	187
IV. Interpretation of Data	T 1 T			ž .	190
V. Summary	at t k				193
References			ar är	10 V	193
14. Identification of Substrate Free R	adical Inte	ermedia	tes of	Per-	
oxidase—Substrate Oxidations 1	ov EPR			100	195
L. H. PIETTE, I. YAMAZAKI,					
I. Introduction		212.10011			195
			8 9		
		* - 2		:×: 11	198
		* *	E 4	*	
		*		8	
		1 3	8 8		208
References	¥ (9) (2)	1 1	al 5c		208
15 For Dadicals and Matal Walance	71	V 41-2	0	J = = = '	
15. Free Radicals and Metal Valence	_				
Demonstrated by Electron Spin					209
T. VÄNNGÅRD, R. C. BRAY,	B. G. MAI	MSTRÖ	M,		
and R. Pettersson					
References					213
		1.0			Mar (m. 47)

			٠	
v	٠,	7	1	
ж	. 1	1.	1	

CONTENTS

16.	The Investigati	on of	the	U	npai	red	El	ectr	on	Cor	ncer	trat	ion	S	
	Produced in L	arge M	ole	cule	s by	Ul Ul	trav	viole	t II	rad	iati	on			215
	B. T. AL	LEN and	d D	. J.	E.	Ing	RAM	[
	I. Summary .														215
	II. Introduction												ac.		
	III. Experimental	: ×	U	201	741								4		216
	IV. Free Radical	Studies	of I	Mela	nin	4		-	- 4	161					217
	V. Properties of	Proteins	and	l A	mino	Aci	ds 1	unde	r Ul	trav	iolet				
	Irradiation	el e						26							219
													*	40	224
17	Electron Spin F) ozonon	00) mi or		0.		:. т	0	1				00=
11.)1 (Jriei	nied	UI	rgan	1C 1	taa.	icais		190		227
	D. H. W														
	I. Introduction							181		*		X.	7.	1	227
	II. Spectroscopic								(4)	8		4	$\langle \hat{a} \rangle_{i}$		229
	III. Interpretation					(8)	d	ÿ1	7	*	Y				232
	IV. Results	70 000				4	\sim	*	4	36	12	61		361	235
	V. Conclusions						20			100					237
	References		*			•	,			*			-		238
18.	Radiation-Indu	ced Par	am	agn	etisi	m in	n Se	ome	Sin	nple	Pe	ptid	es		239
	HAROLD											*			
	and Ken				2127	A. 1	1613	,110,							
			JILIG												000
	I. Introduction		*	4				:•:				120		(0)	239
	II. Glycylglycine	4													240 244
	III. Acetylglycine					ě		7	A.	8	×	10	1		244
	IV. Acetylalanine					3	8		*	\mathbf{e}_i	×				247
	V. Alanylalanine			141			190		8						248
	VI. Summary . References	W 16						*			8	*			248
	References		٠			•					1	*	4	0.7	2/10
						~ .	-				1.		¥ ×		
19.	Quantitative St													1	
	Biologically S	Significa	ant	Ma	teri	als	by	Ion	izin	g R	adi!	atio	ns		249
	M. L. R	ANDOLP	H												
	I. Introduction							:*:							249
	II. Production of	Resona	nces	by	Rac	liati	on	*			- 1			200	251
	III. Decay of Rad												(4)	17	256
	IV. Conclusions														260
	References					v.				į.					261
20	Electron Param	ognotio	D	CON	one	0 84	ndi	00 0	f C	arto	ohre	ma	nn/	1	
20.		_													263
	Hemoglobin									×	ň				200
	WALTER	GORDY	and	Н	ARVI	EY I	V. F	(EXF	ROAL)					
	I. Introduction						ė		*				wil	(40)	
	II. Instrumentati				191						8		9	2.	
	III. Electron Resc													7	
	IV. Resonance of	Unirrad	liate	d C	ytoc	hron	ne	: 40				*	10		26 8
	VI V DV +		E/	- T	·) ±		5-1						1		1