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Preface

The objective of this text is easy to state, and it is to investigate ways to use
a computer to solve various mathematical problems. One of the challenges
for those learning this material is that it involves a nonlinear combination of
mathematical analysis and nitty-gritty computer programming. Texts vary
considerably in how they balance these two aspects of the subject. You can see
this in the brief history of the subject given in Figure 1 (which is an example
of what is called an ngram plot). According to this plot, the earlier books
concentrated more on the analysis (theory). In the early 1970s this changed,
and there was more of an emphasis on methods (which generally means much
less theory), and these continue to dominate the area today. However, the
1980s saw the advent of scientific computing books, which combine theory
and programming, and you can see a subsequent decline in the other two
types of books when this occurred. This text falls within this latter group.
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Figure 1 Historical record according to Google. The values are the number of in-
stances that the expression appeared in a published book in the respective year,
expressed as a percentage for that year, times 10° [Michel et al., 2011].



vi Preface

There are two important threads running through the text. One concerns
understanding the mathematical problem that is being solved. As an exam-
ple, when using Newton’s method to solve f(z) = 0, the usual statement
is that it will work if you guess a starting value close to the solution. It is
important to know how to determine good starting points and, perhaps even
more importantly, whether the problem being solved even has a solution.
Consequently, when deriving Newton’s method, and others like it, an effort
is made to explain how to fairly easily answer these questions.

The second theme is the importance in scientific computing of having a
solid grasp of the theory underlying the methods being used. A computer
has the unfortunate ability to produce answers even if the methods used
to find the solution are completely wrong. Consequently, it is essential to
have an understanding of how the method works and how the error in the
computation depends on the method being used.

Needless to say, it is also important to be able to code these methods and
in the process be able to adapt them to the particular problem being solved.
There is considerable room for interpretation on what this means. To explain,
in terms of computing languages, the current favorites are MATLAB and
Python. Using the commands they provide, a text such as this one becomes
more of a user’s manual, reducing the entire book down to a few commands.
For example, with MATLAB, this book (as well as most others in this area)
can be replaced with the following commands:

Chapter 1:  eps

Chapter 2: fzero(@f,x0)
Chapter 3: A\b

Chapter 4: eig(A)

Chapter 5: polyfit(x,y,n)
Chapter 6: integral(ef,a,b)
Chapter 7: ode45(@f,tspan,y0)
Chapter 8 fminsearch(@fun,x0)
Chapter 9:  svd(A)

Certainly this statement qualifies as hyperbole, and, as an example, Chap-
ters 4 and 5 should probably have two commands listed. The other extreme
is to write all of the methods from scratch, something that was expected of
students in the early days of computing. In the end, the level of coding de-
pends on what the learning outcomes are for the course and the background
and computing prerequisites required for the course.

Many of the topics included are typical of what are found in an upper-
division scientific computing course. There are also notable additions. This
includes material related to data analysis, as well as variational methods
and derivative-free minimization methods. Moreover, there are differences
related to emphasis. An example here concerns the preeminent role matrix
factorizations play in numerical linear algebra, and this is made evident in
the development of the material.
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Figure 2 The number of references in this book, after 1950, as a function of the year
they were published.

The coverage of any particular topic is not exhaustive, but intended to
introduce the basic ideas. For this reason, numerous references are provided
for those who might be interested in further study, and many of these are
from the current research literature. To quantify this statement, a code was
written that reads the tex.bbl file containing the references for this text and
then uses MATLAB to plot the number as a function of the year published.
The result is Figure 2, and it shows that approximately half of the references
were published in the last ten years. By the way, in terms of data generation
and plotting, Figure 1 was produced by writing a code which reads the html
source code for the ngram web page and then uses MATLAB to produce the
plot.

The MATLAB codes used to produce almost every figure, and table with
numerical output, in this text are available from the author’s web site as
well as from SpringerLink. In other words, the MATLAB codes for all of the
methods considered, and the examples used, are available. These can be used
as a learning tool. This also goes to the importance in computational-based
research, and education, of providing open source to guarantee the correctness
and reproducibility of the work. Some interesting comments on this can be
found in Morin et al. [2012] and Peng [2011].

The prerequisites depend on which chapters are covered, but the typical
two-year lower-division mathematics program (consisting of calculus, matrix
algebra, and differential equations) should be sufficient for the entire text.
However, one topic plays an oversized role in this subject, and this is Taylor’s
theorem. This also tends to be the topic that students had the most trouble
with in calculus. For this reason, an appendix is included that reviews some
of the more pertinent aspects of Taylor’s theorem. It should also be pointed
out that there are numerous theorems in the text, as well as an outline of
the proof for many of them. These should be read with care because they
contain information that is useful when testing the code that implements the
respective method (i.e., they provide one of the essential ways we will have
to make sure the computed results are actually correct).
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I would like to thank the reviewers of an early draft of the book, who made
several very constructive suggestions to improve the text. Also, as usual, I
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free and very good TeX previewer.

Troy, NY, USA Mark H. Holmes
January 2016
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Chapter 1
Introduction to Scientific Computing

This chapter provides a brief introduction to the floating-point number
system used in most scientific and engineering applications. A few examples
are given in the next section illustrating some of the challenges using finite
precision arithmetic, but it is worth quoting Donald Knuth to get things
started. If you are unfamiliar with him, he was instrumental in the develop-
ment of the analysis of algorithms, and is the creator of TeX. Anyway, here
are the relevant quotes [Knuth, 1997]:

“We don't know how much of the computer’s answers to believe. Novice com-
puter users solve this problem by implicitly trusting in the computer as an
infallible authority; they tend to believe that all digits of a printed answer
are significant. Disillusioned computer users have just the opposite approach;
they are constantly afraid that their answers are almost meaningless.”

“every well-rounded programmer ought to have a knowledge of what goes on
during the elementary steps of floating point arithmetic. This subject is not
at all as trivial as most people think, and it involves a surprising amount of
interesting information.”

One of the objectives in what follows is to help you from becoming disil-
lusioned by identifying where problems can occur, and also to provide an
appreciation for the difficulty of floating-point computation.

1.1 Unexpected Results

What follows are examples where the computed results are not what is exp-
ected. The reason for the problem is the same for each example. Namely,
the finite precision arithmetic use by the computer generates errors that are

© Springer International Publishing Switzerland 2016 1
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2 1 Introduction to Scientific Computing

significant enough that they affect the final result. Note that the calculations
to follow are from MATLAB, but the same, or similar, results are expected for
any system using double precision arithmetic (this is defined in Section 1.2).

Example 1

Consider adding a series from largest to smallest

1 1 1
S(n)=1+=+:-- = i |
[nfie= L gobrsnd ===, (1.1)

and the same series added from smallest to largest

1
n—1

1 1

s(n)—n+ +---+2+1. (1.2)
According to the usual rules of arithmetic these are equal. However, this
does not necessarily happen when the sums are calculated with a computer.
If one calculates s(n) and S(n), and then calculates the difference S(n)—s(n).
the values given in Table 1.1 are obtained. It is evident that for larger values
of n, the two sums differ. The first question is why this happens, but there
are other questions as well. For example, assuming both are incorrect, is it
possible to determine which sum is closer to the exact result? B

Example 2
Consider the function
y = (z —1)8, (1.3)
If one expands this, the following is obtained
y =28 — 827 4 282% — 562° + 70z* — 5623 + 2822 — 82 4 1. (1.4)
n S(n) — s(n)
10 0
100 —8.88e—16
1,000 2.66e—15
10,000 —3.73e—14
100,000 —7.28e—14
1,000,000 —7.83e—13

Table 1.1 Difference in partial sums for the harmonic series considered in Example 1.
Note that —8.9e—16 = —8.9 x 10716,
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Figure 1.1 Plots of (1.4) and (1.3). Upper graph: the interval is 0.9 < z < 1.1, and
the two functions are so close that the curves are indistinguishable. Lower graph: the
interval is 0.98 < z < 1.02, and now they are not so close.

The expressions in (1.4) and (1.3) are equal and, given a value of z, either
should be able to be used to evaluate the function. However, when evaluat-
ing them with a computer they do not necessarily produce the same values
and that is shown in Figure 1.1. In the upper graph they do appear to agree,
but that is certainly not true in the lower graph. The situation is even worse
than the fact that the graphs differ. First, according to (1.3), y is never neg-
ative but according to the computer (1.4) violates this condition. Second,
according to (1.3), y is symmetric about z = 1 but the computer claims (1.4)
is not. W

Example 3

As a third example, consider the function

V16+k —4
= (1.5)

This is plotted in Figure 1.2. According to I’'Hospital’s rule
lim y = !
ka0’ ~ 8

The computer agrees with this result for k¥ down to about 1072 but for
smaller values of k there is a problem. First, the function starts to oscillate



