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PREFACE

,As far as I am aware, this is the first general introductory text om the

P snbject of computer modeling for 1life scientists, On numerous occasions I
*Chave tried to justify why I should consider myself qualified to write a book

A

of tHis natirge. Such a book is clearly needed to introduce the student to the
excitinﬂ and 'rapidly developing field of computer modeling, and yet, no gen-
eral text seemed to be forthcoming. Eventuvally I decided that even though my
credentials as.a mathematician are éssentially nonexistent, I counld draw
enough from my experiences teaching quantitative courses in biology and chem-—
istry to write an introductory text on modeling. The exercises in the text are
drawn from ten years experience developing instructional simulation models and
teaching introductory courses on biological simulation techniques. The mathe-
matics employed is gemerally guite simple, and hence understandable to most
students of life sciences. The emphasis is on applications rather than
sophisticated mathematical methodology. Few people realize the exciting
things that can be done on the digital computer with relatively simple numer-
ical methods, Even unsophisticated models can produce realistic and instruc-
tive simulation output when implemented in this way.

Neither understanding of nor appreciation for computer modeling can occur
without actually programming the models and interacting with the computer.
For this reason, this book consists of a series of exercises which are inte-
grated with the descriptive material. Thus, it may seem more like & labora-
tory manual than a text., The computer is, in fact, a powerful laboratory tool
ideally suited for developing and testing biological concepts. As students
complete the exercises, they begin ta see each system from a new perspective.
Real understanding of a system often comes more from the process of model’
development than from examination of -the simulation data the model produces.
Students are always more enthusiastic about developing their own models than
they are about working with '‘canned’ programs which someone else has prepared.
The modeling process serves to reinforce the basic understanding of the quan-—
titative principles of biology. Thus, the text might be described as an
introduction to the numerical approach to biomathematics.

Biology is a highly integrated science and mathematics is one of the chief
integrating forces. As an example, the mathematical concepts of chemical
kinetics employed in biochemistry are often used in modeling population
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dynamics. Compartment modeling and transport processes find applications at
all levels of biological organization from the sub-cellular level to the
ecosystem level. For this reason, the material has been organized cumvla-
tively. Each chapter builds in one way or another on preceding chapters. My
students are encouraged to complete at least one or two representative exer—
cises from each chapter. A diversity of material is provided so that most
students can satisfy their particular interests. Experience with simple
models provides them with the background to appreciate the potential role of
computer modeling in understanding complex biological systems such as large
ecosystem models, world models, and complex models dealing with human
physiology.

The text is divided into three parts. The first deals with simple equations
that model single biological systems or system components. Individual chap-—
ters illustrate the various ways in which simple model equations are derived,
and used in the computer to generate simulation data. This approach gives the
students time to learn computer programming techniques while doing simple
examples. Those sections or exercises essential in understanding the other
parts have been marked with a double asterisk (*%),.

The second part is concerned with deterministic models of multicomponent
systems. These models generally employ numerical techniques to solve mul tiple
equations with interdependent variables. This part is organized according to
specific areas of application and/or modeling approaches within a specific
ea of application. To a limited extent, one may pick and choose according
to™his or her field of interest. However, there are certain techniques and
concébts with broad  applicability which should be understood irrespective of
field of\é::erest; As before, these essential concepts have been marked with
the double™asterisk.
The third paf\%ﬂ;:ls with the effects of random processes on biological sys-—
tems. Its chaptecs are devoted to topics such as sampling processes, random
walks, and queueing. The effect of discrete events occurring randomly in time
is emphasized. The exemples and exercises employ a direct approach called the
Monte Carlo technique.

conjunction with time—sharing terminals. This approach was not totally suc-
cessful for several reasons. . ‘Students without previous computer course work
often dropped the course as a result of the initial trauma of interacting with
a major computer system. For example, they experienced difficulties with
account numbers, run identification numbers, passwords, lost programs and long
turnaround time. The problems were often compounded by a communication break-—
down between the computer center, the instructor, and the student. Other
problems included crowding of the terminal room, and the difficulty of con—
tacting the instructor kan questions arose about programming exercises.

N
The book was originally daii::ed to employ BASIC programming language in

When microcomputers became available, it was evident that many of these prob—
lems could be solved by setting up a small independent computer lab in the
department. Subsequent experience has proven this approach to be correct.
Many more students now complete the course, and the quality of work has been
enhanced because of the improved graphics capability and quick turnaround time
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provided by the microcomputer. Thus, the present text has been modified
extensively to take advantage of the exceptional capabilities of the micro—
computer. However, the general aspects of the original book have been
retained so that it may be employed with time—sharing systems if these are
preferred. For more detailed discription of the development of the simulation
course at Michigan Tech, see Spain (1981).

References have been provided throughout the text to give access to the more
important literature on the subject of modeling. However, the reader is
reminded that this is an introductory text and it is not possible to include a
rigorous literature review on each subject. Models developed in conjunction
with my own course work have been included without any citation or source
indicated. These deal with common biological systems, so it is likely that
similar models are described elsewhere in the literature. I apologize in
advance to those who see their pet ideas published here without proper cita—
tion. When such oversights occur, please inform me so they can be properly
referenced in future editions.

I am heavily indebted to Dr. Fdwin T. Williams of the Department of Chemistry
and Chemical Engineeering for thoughtfully and critically reviewing early
drafts of the text and for making many suggestions which have been incorpo-
rated. I would also like to thank my colleagues in the Biological Sciences
Department for their comments and criticisms. Special thanks go to Dr. Janice
Glime, Dr. Kenneth Kramm, and Dr. Robert Keen, especially for their help on
the sections dealing with ecology, and to Dr. Martin Auer for his review of
the sections on limiting factors for growth. Thanks also go to Dr, James
Horton at the Biology Department, California State College in Bakersfield, and
to Mrs. Lois Young for their editorial assistance.

Special gratitude goes to Dr. Brian Winkel, my close friend and colleague at
the Division of Mathematics, Rose—Hulman Institute of Technology, for his
comments, criticisms, and encouragement during the final stages of manuscript
development, and to Phyllis Winkel, for the hours spent patiently transcribing
various versions into the word—-processor. Finally, thanks go to the many
Michigan Tech students who contributed comments and suggestions during the
development of this course material.

I believe that the objectives outlined in this preface are very desirable for
an introductory course in modeling for biologists. I have tried to make this
text meet those objectives and fill what many believe is a need in the cur—
riculum of life science majors.

The reader should recognize that this is not intended to be the ’'last word’ in
computer modeling. Rather it represents a first attempt to organize the
general principles of computer modeling into a single integrated body of
information. I hope that others will be stimulated to build on my beginning
and ultimately produce a text which is fully representative of this exciting
new field.

James D. Spain



utllity programs and sample exercises designed to complement the text are available from
Addison-Welsey. Programs on mini-floppy disk or cassette for either TRS-80* or Appie-il**
microcomputers Inciude CURFIT, POLYFIT, POISSON, GRAPH, TOLLGATE, NORMAL and sample
exercises from the book. Inquiries and orders should be directed to the publisher.

*TRS-80 Is a trademark of Radlo Shack, a division of Tandy Corporation.
**Apple H Is a trademark of Apple Computer, Inc.
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INTRODUCT ION
THE ROLE OF COMPUTER MODELING AND SIMULATION [N BIOLOGY

Future life scientists may be characterized more by their ability to use the
computer for data analysis and simulation than by their ability to use the
traditional microscope. Biology is potentially the most mathematical of the
sciences. This results from the fact that living systems involve a complex
interaction of chemical and physical processes all of which are capable of
being described in mathematical terms. These systems which are much more
complex than any devised by the mind of man have for the most part resisted
mathematical analysis by the classical methods so successfully employed by
physicists and chemists. Only recently, with the advent of the digital com-—
puter, have biologists been able to use numerical methods to deal with these
multi-component systems. The resulting new interest in biomathematics has
been further stimulated by the availability of the personal computer. Sud-
denly biologists find that they can easily bring into their office or lab a
tool capable of a wide range of data analysis techniques. Statistical methods
that previously required hours to accomplish using the calculator can now be
completed in minutes. Thus, many techniques, such as cluster analysis and
multiple regression, should soon become routinely employed by most know-
ledgable biologists and a necessary component of undergraduate biology
instruction. L !

Computer modeling and simulation is another area of biomathematics which is
now accessible to all biologists as a result of the microcomputer revolution.
Simulations previously employed by the few who happened to have the mecessary
equipment and expertise are now available to anyone willing to take the time
to learn the few simple programming tricks that are needed to use BASIC as a
simulation language. The objective of this book is to provide an organixed
discussion of biological simulation techniques which may be implemented on the
microcomputer.

James D. Spain, BASIC Microcomputer Models In Biology ISBN 0-201-10878-7
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2 CONCEPTUAL MODELS

Conceptual Models

Models and other analogies have always played an important role in the scien-—
tific thought process. The use of models is so ingrained in our thinking that
we are often unconscious of the important distinction between models and real
systems. A model may be defined as any representation of a real system. It may
deal with either the structure or function of the system. It may use words,
diagrams, mathematical notation, or physical structures to represent the
system. It is often synonymous with concept, hypothesis, or analogy. As mno
model can totally represent the real system in every detail, it must always
involve varying degrees of simplification. Using this broad definitionm, it
becomes evident that essentially all science deals with the formation, exami-
nation, and improvement of conceptual models about our universe. At this
point, it would be valuable to review some of the conceptual models that have
contributed to our present ideas about living systems.

The atom as a unit of elemental structure and the molecule as a unit of
chemical reactivity were for a very long time simply conceptual models. Only
in the last few decades have wc been able to observe directly a few very large
molecules using electron microscopy. X-ray diffraction allows one to con-
struct physical models of molecules based upon the diffraction patterns they
cast. It is still an indirect technique for observing that which we may never
be able to observe directly. When Linus Pauling (1977) worked out the a-helix
structure now found to be present to some degree in most protein polypeptide
chains, he experimented with various molecular configurations using paper
models until he arrived at one which had repeat distances that were consistent
with his x—ray data, Another classical example is the double helix structure
of deoxyribose nucleic acid (DNA) ,first proposed by Watson and Crick, based
upon a molecular model which fitted many of the known properties of DNA
(Watson, 1968). Like most good models, it triggered a burst of experimental
activity which has continued to the present.

What is often referred to as the typical animal cell or the typical plant cell
is actwally a diagrammatic model of the cell based upon a composite of many
observations of many kinds of cells using a variety of observation techniques
(Hardin, 1966). The three—dimensional structure of most organs within the
body is based unpon the serial analysis of hundreds of two-dimensional tissue
sections using the technigue of stereology (Elias and Pauly, 1966). The
resulting three—dimensional organ models are often es&ential to the under—
standing of their function under normal and abnormal conditions.

The conceptual model of the gene has gone through a long history of evolution
(Glass, 1963). The blending theory of heredity gave way to the concept of
hereditary particles described as 'beads on a string.’ Subsequently, the gene
has been considered as that portion of chromosomal DNA which codes for a
single polypeptide chain. Despite the great advances made in this field, it
is still dominated by conceptual models based largely upon the observation of
genetic effects. Each new model has led to a new set of questions, which in
turn have led to a new and better understanding of the nature of the gene.
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In ecology, the food chain and the food pyramid are important conceptual
models which have been used to explain the flow of energy and cycling of
materials within the ecosystem. The theory of evolution is based on an enor—
mous amount of evidence, but still must be considered a conceptual model.

In biochemistry, we deal with a variety of conceptual models about enzyme
action, including enzyme attachment to the substrate and enzyme responses to
changes in temperature and pH. The metabolic pathways that we call gly-
colysis, Krebs’ cycle, and the carbon cycle of photosynthesis are in reality
conceptual models which, like other models, may require modification to be
consistent with new findings. Each of these models has led to great spurts in
experimental activity because of the questions raised. We depend on these
models to make decisions about medical treatment, drug action, treatment of
poisons, and nutrition of both plants and animals.

It is clear that biclogy has profited greatly by translating real systems into
models of various types. Some of the earliest models involved careful obser—
vation and drawing in great detail the morphology of systems under investi-
gation. This technique still provides a valuable means of forcing oneself to
see details about a structure which would otherwise go unnoticed. Those who
have taken the time to accurately draw some detailed biological structure on
paper soon realize that they had never really examined the subject before., New
morphological details suddenly appear, and interesting relationships become
evident. This illustrates that the greatest bemefit of a model often comes as
a direct result of the thought process involved in model development. Clearly,
modeling has played an important role in the understanding of most biological
systems.

Life science is involved in more than just description and understanding of
natural systems. Very early in history, man decided to be a manager of his
environment, and one of the objectives of biology is to gain sufficient infor-—
mation about complex living systems to manipulate them for our benefit. Man-
agement decisions are made on the basis of the conceptual models as perceived
by the manager. Whether we are talking about wildlife management or medicine,
it is obvious that improvement of our conceptual models will lead to better
management,

Conceptual models, by themselves, are gemerally lacking in rigor. They can be
imprecise and interpreted differently by different people. To circumvent this
disadvantage, a method has been developed for translating the conceptual model
into a form which is more subject to precise description, evaluation, and
validation. This form of the conceptual model is called the mathematical
model.

The Mathematical Model

Mathematical models deal with the rate of change of systems of cells, organ—
isms, populations, or molecules with time and the extent to which such systems
are effected by light, pH, temperature, or other environmental factors. A
mathematical model may be as simple as a single equation relating one variable
to another, or it may involve the interaction of many equations having several
mutually dependent variables. The latter will be referred to as a
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multicomponent system model. Simple mathematical models may be obtained in
various ways, but the two meain approaches involve either theoretical deriva-
tion, or empirical derivation through statistical analysis.

An equation or group of equations by themselves may not contribute much to the
understanding of a particular phenomenan. For this reason, it is usually
necessary to solve the equation for some representative values of the indepen-
dent variable (for example, time, pH, or temperature) and to present the
resulting information in the form of & graph. Because of the amount of data
involved, this is best done by implementing the mathematical model on a com-—
puter, especially one with graphics display capability.

Computer Simulation

Simulation in its simplest form involves implementing of a mathematical model
on the computer to produce simulation data. In this way, the output of the
mathematical model may be readily compared with experimental data from the
real system in order to evaluate the model. Because of the complex interre-
lationships involved, simulation is particularly essential to the under-
standing of the multicomponent system model. '

The process of developing a simulation model forces the investigator to de-
scribe the system in simple terms. When working with the model in this way,
the investigator must take into account details about the system which might
otherwise go unnoticed. The objective of any kind of model is to provide a
means for obtaining new insights into the operation of a system. Simulation
assists in this regard by permitting experimental interaction with the model
to produce verifiable responses.

There are two basic approaches to simulation using mathematical models. One
involves the use of the analog computer to solve the mathematical equations by
reducing them to electrical analogs such as resistors, capacitors, and amp—
lifiers. The output of the analog computer is a time varying voltage which is
recorded on either an X-Y plotter or a cathode ray tube. It is especially
useful for simulation models which involve the integration of complex dif-
ferential equations such as those describing growth or energy flow. However,
not all systems lend themselves to the analog approach, and programming
requires considerable understanding of the electronics principles involved.
The other basic approach involves the simulation of a system by numerical
methods employing the digital computer. This text is concerned exclusively
with the latter technique.

The- general approach to digital computer simulation usually involves the
following steps. First, the system must be analyzed in order to determine the
basic components required for the development of a conceptual model. Often
this analysis results in the construction of a block diagram of the systent,.
Next, the key variables are defined, and each is expressed in the form of a
simple functional relationship with the other variables in the system. Equa-
tions are then derived establishing the actual mathematical relatioanship
between the variables. This derivation is done either empirically, through the
use of statistical methods such as curve fitting, or analytically, by deriving
the equations from theoretical considerations. Next, the mathematical
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expressions are programmed into the computer, and various rate comnstants or
coefficients are assigned. The simulation is then allowed to run and produce a
set of simunlation data. The simulation data are then compared with experi-
mentally obtained data to validate the performance of the model. Usually, the
model requires some modification at this point in order for it to simulate the
real system more accurately. After sufficient verification and validation,
the model may be used to perform experiments in much the same manner as one
performs experiments on the real system.

In many ways, simulation may be likened to a game that one plays with the
computer. The computer keeps track of all the rules of the game, follows
through the play in correct sequence, and provides any random numbers that
might be necessary to simulate the effects of chance. Persons working with
the simulation would have various decisions to make just as they would in
playing computerized football, where, depending on conditions, they would
select certain strategies to optimize the chances of scoring. In the same
way, an individual working with a population growth simulation would have an
opportunity to decide initial population levels, growth rates, whether there
is predation or not, and how predation relates to changes in population den—
© sity. The simulation would be run for a while so that its behavior might be
observed. Subsequently, one may wish to alter conditions in an attempt to
stabilize the system or to observe the effects of different growth rates. The
outcome of such a '"'game’’ will depend on the assumptions made in designing
the simulation and on the initial parameters selected by the simulator.

Just as computerized football can only approach the real game in terms of
complexity, the whims of chance, and multiplicity of decisions to be made,
simulations can only approach the real system to varying degrees depending
upon the complexity of the computer model employed. On the other hand, it is
possible to simulate systems which would be almost impossible to investigate
experimentally because of the magnitude of time and/or space involved. For
example, investigation of a real predator—prey system could involve population
estimates taken over a 10-50 year period and a 10-1000 square mile area. Even
population experiments in small closed systems may require intense study over
many weeks to provide meaningful results. A simulation of these same systems
could be carried out in seconds on the computer.

Some of the concepts presented above have been summarized in a diagram re—
lating modeling and simulation to the overall process of research and manage-—
ment. (See Figure 1.)

It all begins, of course, with the Real System. It must be understood that
any biological system must always remain to some extent a ""black box.'”” No
matter how much information we have about a particular biological entity we
must always remain on the outside looking in. For this reason, the Real
System is distinguished from all other components of the diagram by repre-—
senting it as a circle. All of the boxes represent forms of information that
in one way or another are derived from the Real System. As such, they are
reflections or perceptions of the Real System. Arrows represent processes by
which this information is obtained and manipulated.



