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Preface

At the London School of Economics, a whole spectrum of courses on
mathematical methods is given ranging from very elementary courses for
those who know virtually no mathematics to courses for:those researching in
mathematical economics and the like. It is our intention  to produce a number
of books which cover the material in these courses. Each of the books will

be an independent entity but it is our hope that the whole will prove greater
than the sum of its parts.

The current book is a ‘second-devel’ wo k on calculus. The main topic is
the calculus of several variables but elementary differential and difference -
equations are also treated at some length. The emphasis is very strongly on
‘how to do it” aspects of these topics rather than their theoretical basis. How-
ever, there is little point in learning formulae by rote (except in so far as this
helps in passing exaiainations set by rote). To use a technique in practice it is
necessary to have some understanding of why it works. We therefore supple-
ment the description of the various techniques with brief explanations of
their theorstical background. But formal proofs are never attempted and,
wherever possible, geometrical arguments are used.

At the end of each chapter, a variety of applications are given. These are
drawn {rom economics, statistics and operational research reflecting our
interests at LSE. However, the mathematical techniques described in the
book are, of course, far more widely applicable and we hope that the book
will be found useful not only by those studying mathematics with a view to
applications in the social sciences but also by physical scientists and engineers.
Returning to the applications given at the end of each chapter, these are quite
advanced compared with the general levei of the text. The aim has been to
generate some excitement about the potentialities of the mathematical tech-
niques rather than to usurp the role of those teaching applied courses. We
have therefore included material on such topics as the duality theorem of

*linear programming, the Kuhn—Tucker theorem, the Slutsky equations, the
cobweb model and a wide range of statistical topics including the central limit
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Preface ‘ vii

theorem and the gambler’s ruin problem. Students who find the math-
ematical techniques described in the main body of the text troublesome to
grasp would be advised not to try and puzzle out the details of these appli-
cations but to come back to them when they are encountered again at a later
stage. Scientists and engineers, incidentally, might well benefit froin observing
the scope of these applications in the social sciences.

It is assumed that readers of this book will have some previous knowledge
of the calculus of functions of one real variable. It is quite unsuitable for
those with no knowledge whatsoever of this subject. On the other hand, the
material treated in this book is taught at LSE to an exceedingly disparate
group of students from all over the world. Some of these know very little.
Others are graduate students brushing up their knowledge. We have therefore
found it necessary to provide a substantial amount of revision material on
topics which it would be better for readers to know properly before starting
on this book. It is surprising how large the holes can be in the knowledge even
of those whose previous mathematical education is entirely orthodox. Our
experience has been that it is unprofitable to place this revision material on
the calculus of one variable in a block at the beginning of the book. The
temptation to neglect it altogether is then almost irresistible. It has therefore
been somewhat slyly interwoven with the main body of the text in the hope
that all readers will at least skim through it before moving on to new topics.

Some knowledge of linear algebra is also assumed. However, the level of
understanding required is not a high one aud sections explaining the basic
ideas are included wiere appropriate. But it should be appreciated that these
brief passages are not intended as a substitute for a course in linear algebra.
(At LSE, students take a concurrent course in linear algebra while studying
the material covered in this book.) As in the case of the calculus of one
variable, those who are totally ignorant of the subject should begin with a
more elementary book than this.

Sections which are intended as revision material and hence survey the ideas
covered rather than explain them are marked with the symbo! . These
sections should at the very least be scanned quickly to make sure the notation
and techniques are all familiar. Certain other sections are marked with the
symbol . These should be omitted altogether by those who find the text
difficult to cope with.

Finally, attention should be drawn to the examples and problems. When
studying a ‘how to do it’ book, the criterion of success is whether or not one
has learned ‘how to do it’. Thus, a reader should count himself successful if
and only if he is able to solve a substantial percentage of the problems which
are given. This remains the case even for those who are not too sure whether
they understand the foundations of the subject. When a formal subject like
mathematics is presented informally as in this book, it is inevitable that all
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but those who are unusually gifted will have doubts about their grasp of the
theory. Those who wish to dispel their doubts should consult a book in which
the empbhasis is on theoretical matters and proofs are given in a formal and
‘precise way (e.g. the author’s book Mathematical Analysis: a straightforward
approach, also published by CUP). But, as far as the current book is
concerned, a reader would be wise to accept that his understanding of the
basic theory must be reasonably good if he can solve most of the problems
since someone with little grasp of the theory would make no headway with
the problems at all.

In any case, it is quite pointless to attempt to read this book without
making a commitment to tackle the problems. Certainly far more time should
be spent on attempting problems than on reading the text. To assist in this
task, solutions are given at the end of the book to every other problem. Those
for which no solution is given are marked with the symbol *. The usual (but
not inevitable) pattern is that a starred question follows a rather similar
unstarred question. In attempting a starred questior: it will therefore often be
helpful to begin by first trying the preceding unstarred question and then
consulting the solution given for this should this prove necessary. Obviously,
however, little will be gained if the solution is consulted prematurely.

K. G. Binmore
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1

Vectors and matrices

This book takes for granted that readers have some previous knowledge
of the calculus of real functions of one real variable and also some know-
ledge of linear algebra. However, for those whose knowledge may be rusty
from long disuse or raw with recent acquisition, sections on the necessary
material from these subjects have been included where appropriate. Although
these revision sections (marked with the symbol o) are as self-contained
as possible, they are nor suitable for those who are entirely ignorant of
the topics covered. The material in the revision sections is surveyed rather
than explained. It is suggested that readers who feel fairly confident of
their mastery of this surveyed material scan through the revision sections
quickly to check that the notation and techniques are all familiar before
going on. Probably, however, there will be few readers who do not find
something here and there in the re vision sections which merits their close
attention. ’

The current chapter is concerned with the fundamental techniques from
linear algebra which we shall be using. This will be particularly useful for
those who may be studying linear algebra concurrently with the present
text.

Algebraists are sometimes neglectful of the geometric implications of their
results. Since we shall be making much use of geometrical arguments, par-
ticular attention should therefore be paid to §1.16—§1.21, inclusive, in
which the geometric relevance of various vector notions is explained. This
material will be required almost immediately in chapter 2. The remaining
material will not be needed until chapter 4. Those who are not very confident
of their linear algebra may prefer leaving §1.31 until then.

1.1 Matrices”™

A matrix is a rectangular array of numbers. We usually enclose the array in
brackets as in the examples below:



2 Vectors and matrices

A matrix with mn rows and # columns is called anm x n matrix. Thus 4 is
a3 x 2 matrix and Bisa 2 x 3 matrix.

The numbers which appear in a matrix are called scalars. Sometimes it is
useful to allow the scalars to be complex numbers but our scalars will always

be real numbers,

1.2 Scalar multiplication™

One can do a certain amount of algebra with matrices and in this and the next
few sections we shall describe the mechanics of some of the operations which
are possible.

The first operation we shall consider is called scalar multiplication. 1f A
is an m x n matrix and s is a scalar, then sA is the m x n matrix obtained by
multiplying each entry of 4 by s. For example,

4 1 2x4  2x1 8 2
24 =2J0 —1)={2x0 2x—1}=]0 -2}
3 2 2x2 2x2 \6 4
Similarly,

1 0 —1 5 0 -5
SB =235 = .
2 1 0 10 5 0

1.3 Matrix addition and subtraction™

If C and D are two m x n matrices, then C + D is the m x n matrix obtained
by adding corresponding entries of C and D, Similarly, C—D isthem x n
matrix obtained by subtracting corresponding entries. For example, if

1 -1 0 2 1 5
C=]=2 3 1 and. D=y—1 —3 4
4 1 0 -3 2 1

then
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2C

142 —1+1 0+5 3 0 5
C+D = f-2—1 3-3 1+4)=(—3 0 5
4—3 1+2 0+1 1 3 1
and
=2 . —-1-1 0-35 -1 -2 =5
C=D=(-2+1 3+3 |—4)=(—1 6 =3}
4+3 I—2 0-—-1 w7 =1 =1
Note that
141 =1—1 0+0 2 -2 0
C+C=]—-2-2 3+3 1+1)=(—4 6 21}=
4+4 1+1 040 8 2 0
and that

I—-1 —1+1 0—-0 0 ¢ O
C=C=|=2+2 3=3. 1-—1 0 0 0}
4—4 1—-1 0—-0 0 0 0

The fina! matrix is called the 3 x 3 zero matrix. We usually denote any
zero matrix by 0. This is a little naughty because of the possibility of
confusion with other zero matrices or with the scalar 0. However, it has the
advantage that we can then write

cC—C=0

for any matrix C.

Note:
It makes no sense to try and add or subtract two matrices which are
not of the same shape. Thus, for example, .
4 1 ‘
1. © =
A+B ={0 —1]+
2 1 0/
3 2

is an entirely meaningless expression.



4 Vectors and matrices

1.4 Matrix multiplication”™

If A is an m x n matrix and B is an n X p matrix, then 4 and B can be multi-
plied to give an m x p matrix 4B.

+—— nN—> - ) —> - —

- 3
=
—,
I
_—

To work out the entry ¢ of AB which appears in its jth row and kth column,
we require the jth row of 4 and the kth column of B as illustrated below.

jth row of AB

\

b
5 27 2 2 z = I
hs
jth row ot A |1
7
/ P /

Ath column of B

Ath column of AB
The entry ¢ is then given by

C = a|b| +02b2 +a3b3 + .. .+ﬂnb,,.

Example 1.5.7
We compute the product AB of the matrices

(0 1 2)
A = J B =
2 0 1

* Since A is a 2 x 3 matrix and B is a 3 x 2 matrix, their product 4B isa 2 x 2
matrix.

2 1)
0 2
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1 0
0 1 2 a b
AB = 2 1)= .
2 0 1 c d
0 2

To calculate ¢, we require the second row of A and the first column of B.
These are indicated in the diagram below:

2{of1t]|JA]o] 2 t'd/

second row of A first column of B second row and first column of AB

We obtain that

c=2x14+0x2+1x0=2+4+0+0 = 2.
Similarly,
a =0x14+1x24+2x0=0+24+0=2
=0x0+1x1+2x2=0+1+4=35
d=2x0+0x1+1x2=0+0+2 = 2,
Thus
1
0o 1 2 2 5
AB= — X
2 0 1 2 Z
Note:

It makes no sense to try and calculate AB unless the number of
columns in 4 is the same as the number of rows in B. Thus, for example,

1 0\ /0 1 2
2 1112 0 1
0 2/\2 1 3

is an entirely meaningless expression.
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1.6 Identity matrices "

An n x n matrix is called a square matrix for obvious reasons. Thus, for
example,

12 3
A=13 1 2
2 3 1

is a square matrix. The main diagonal of a square matrix is indicated in the
diagram below:

Z/{\- main diagonal
w

/A4

i

g4

i

The n x n identity matrix is the n x n matrix whose main diagonal entries
are all 1 and whose other entries are all 0. We usually denote an identity
matrix by 7. The 3 x 3 identity matrix is

1 0 0
I=§0 1 0]}
0 0 1

Note that an identity matrix must be square. Just as a zero matrix behaves
like the number 0, so an identity matrix behaves like the number 1.
Specifically, we have that, if A is anm x n matrix, B is an n x p matrix and /
is the n x n identity matrix, then

Al = A and IB = B.

Examples 1.7

1 0

0 1 2
(i)( ) 0
2 0 1

0

o o

(0»12)
“l2 0 1

(=]
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1 0 0\ /1 © 1 0
(o i 0 2
0 0 1/\0 2 0

()
—
Il

2

1.8 Determinants”

With each square matrix there is associated a scalar cailed the determinant of
the matrix. We shall denote the determinant of the square matrix 4 by
det(4) or by | 4|. (There is some risk of confusing the latier notation with
the modulus or absolute value of a real number. Note that the determinant
of a’'square matrix may be plus or minus.)

The general definition of a determinant is rather complicated and we
therefore shall only explain how to calculate the determinantsof 1 x 1,2 x 2
and 3 x 3 matrices.

(i) 1 x 1 matrices. A 1 x 1 matrix A = (¢) is just a scalar and det(4) =a.

(ii) 2 x 2 matrices. The determinant of the 2 x 2 matrix

is given by

det(4) =

a b
= ad — be.
¢ d

(iii) 3 x 3 matrices. The determinant of the 3 x 3 matrix

a b ¢
A=yd e f
g h i
is given by
a b ¢
~det(4) = |d e [|= (aei + bfg + cdh) — (ceg + afh + bdi).
g h i

This is most easily remembered by drawing the diagram below:
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tirst column second column

Examples 19"
(i) The determinant of the 1 x 1 matrix A = (3) is simply
det(A4) = 3.
(1i) The determinant of the 2 x 2 matrix

()

det(4) = =1x4—2x3=4—-6=—2.

(iii) We find the determinant of the 3 x 3 matrix

1 2 3
A=13 1 2
2 3 1

Thus

detid)y = |3 1 2| =(1+8+27)—(6+6+6)=36—18=18



Vectors and matrices

1.10 Inverse matrices”

We have dealt with matrix addition, subtraction and multiplication and found
that these operations only make sense in certain restricted circumstances. The
circumstances under which it is possible to divide by a matrix are even more
restricted.

A non-singular matrix is a square matrix whose determinant is non-zero.
Each of the matrices of example 1.9 is therefore non-singular.

Suppose that 4 is a matrix. Then there is another matrix B

such that
AB=BA=1]

if and only if 4 is nun-singular.

In fact, if A is non-singular there is precisely one matrix B such that
AB = BA =1I. We call this matrix B the inverse matrix to A and write
B=47,

Thus a non-singular matrix A has an inverse matrix A which
satisfies

AAT = A7'4 =L

If A is an n x n matrix, then A™" is an n x n matrix as well (otherwise the
equation above would make no sense).

If A is not square or if A is square but its determinant is zero (i.e. 4 is
singular), then 4 does not have an inverse in the above sense.

If B is an m x n matrix and 4 is an n x n non-singular matrix, then one
can define B/A by BA™" . Note, however, that such a definition of division
is severely restricted in its range of application.

1.11 Transpose matrices”

In describing how to compute the inverse of a non-singular matrix, we shall
need the idea of a transpose matrix. This is also useful in other connexions.

If A is an m x n matrix, then its transposeAT is the n x m matrix whose
first row is the first column of 4, whose second row is the second column of
A, whose third row is the third column of 4 and so on.
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——

T A
1
ay | by | e dy ey r ay | dy | dj

4= | a| k| s | ita l-:i/;a AT= | b, | by | by
ay | by e dy "il CGilex|esfn

T e d, | dy | dy

ey e | €s

- N —>

Alternative notations for the transpose are 4" or 47,
An important special case is that when A is a square matrix for which
A =AT . Such a matrix is called symmetric.

Examples 1.12"

4 i
4 0 3
(i) If4A =0 -1} thend” = .
1 -1 2
3 2
Note that
4 1
4 0 37
4T = ) ={0 1] = A.
1 —1 2
32
1 3 5 i 3 5
(i) IfA =3 2 0f.thend” =§3 2 o}
5 0 4, 5 0 4

Thus 4 =AT and so 4 is synumetrric,

1.13 Cramer’s rule”

Cramer’s rule is a method for working out the inverse of a non-singular
matrix. Other methods exisi but Cramer’s rule is usually easiest for 1 x |,
2 % 2 and 3 x 3 matrices.

In the case of 1 x 1 and 2 »x 2 matrices, one might as well learn the result’
of using Cramer’s rule by heart.

(i) ! x 1 matrices. A I » | non-singular matrix 4 = (@) is just a non-zero
scalar and



