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Foreword

Four decades ago, James Rheinwald and Howard Green described the first long-term culture method for normal
human cells. They combined freshly isolated human skin cells with irradiated mouse fibroblasts. Gradual
improvements allowed them to generate large confluent sheets of epidermis, starting from relatively small numbers
of primary proliferative skin progenitor/stem cells. In 1980, Green and his colleagues performed the first successful
therapy of two third-degree burn patients with cultured autologous keratinocyte sheets. In a dramatic demon-
stration during the summer of 1983, they exhibited that large-scale use of the method was life-saving for two
brothers: five-year-old Jamie Selby and six-year-old Glen; both had sustained burns over >95% of their body
surface. Later studies accomplished similar spectacular results in the lab and in the clinic with a related tissue, the
cornea.

Despite these early successes, it has long been held that healthy mammalian cells cannot be maintained
(let alone expanded) outside the body, in a dish. This is now rapidly changing. The stem cell field has gone through
a period of prolonged expansion. Many new stem cell types have been identified and characterized. However, the
ways by which stem cells are nurtured by their niches still remains uncovered. Based on the new insights in
understanding stem cell niches, it is now possible to culture stem cells representing virtually any tissue type in a
dish. Under the right conditions, these stem cells not only simply increase in their numbers but also self-organize
into organoids: miniature versions of real organs, like mini-brains, kidneys, or guts. Organoids are great
experimental tools to ask basic science questions. Yet, the ease of organoid production from stem cells and their
resemblance to human organs in health and disease holds great appeal for translational research and invites their
almost immediate application into the clinic.

This book is written by scientists who have contributed to many of the recent stem cell discoveries. It touches on
all aspects of stem cell niche research, basic and applied. It contains a wealth of information for anyone with a
scientific interest in learning about newest approaches to engineer stem cells and their niches. Enjoy a good read!

Hans Clevers

. 4%
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CHAPTER

1

The Need to Study, Mimic, and Target Stem
Cell Niches

1,2,3

Ajaykumar Vishwakarma', Jeroen Rouwkema'*?»,
Peter Anthony Jones'*"*, Jeffrey M. Karp'-**

'Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, United States; “Harvard-MIT Division of
Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States; *University of
Twente, Enschede, The Netherlands; “Harvard Stem Cell Institute, Cambridge, MA, United States
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1. INTRODUCTION

1.1 The Stem Cell Niche in Health and Disease

As opposed to single-celled organisms, cells in
complex multicellular organisms are associated with a
tissue-specific physiological environment. Different cell
types differ in morphology and function; yet, they are
genetically identical. This variation, caused by
differential gene expression, is controlled by intrinsic
mechanisms and by extrinsic signals from the local envi-
ronment, thereby controlling distinct cellular behavior,
or “phenotype.” The local physiological microenviron-
ment supporting the cell and driving extrinsic cues
from outside the cell is known as the “cell niche,” which

Biology and Engineering of Stem Cell Niches
http://dx.doi.org/10.1016/B978-0-12-802734-9.00001-9

is composed of extracellular matrix (ECM) components
for attachment/anchorage, diffusible biomolecules for
cell signaling, cell surface ligands for signal transduc-
tion, and essential cell—cell interactions.

Studies of cell populations during embryonic devel-
opment have led to the identification of stem cells that
possess the ca?acity to produce a full organism from a
fertilized egg.” Stem cells are functionally defined as
undifferentiated embryonic or adult cells, which can
self-renew and generate differentiated cell types with
varying degrees of potency. The fundamental replicative
feature of stem cells, along with their generation of
differentiated progeny, accounts for the origin of the

Copyright © 2017 Elsevier Inc. All rights reserved.
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word “stemness.” However, whether stem cells need a
special environment that controls stem cell renewal,
maintenance, and survival, and what is the nature of
such microenvironment are pertinent questions many
researchers continue to explore. With growing evidence,
there is a growing consensus that in vivo function and the
fate of stem and progenitor cells are regulated by the
interplay of various extrinsic signals of tissue-specific mi-
croenvironments, often referred to as “stem cell niches.”

The concept of a stem cell niche was first proposed by
Schofield in the late 1970s as a physiologically restricted
microenvironment that supports stem cells.” The initial
concept of anatomically distinct sites that regulate
hematopoietic stem cell (HSC) activity and self-
renewal was later extended to acknowledge the discov-
ery of stem cells and their niches in multiple tissues.’
Stem cells are often linked with asymmetrical cell divi-
sion, and the niche maintains a stable number of stem
cells during homeostasis, and removal of the niche in-
duces differentiation. Extrinsic signals interact and inte-
grate to ensure that one cell remains in the niche, while
another escapes it by receiving a differentiation signal. It
is now clear that in high-turnover systems, such as in the
gut and blood, the behavior of stem cells is not uni-
formly quiescent, and the various niche components
may govern their relative proliferative activity.*™®
Also, it is emerging that stem cell performance is not

Stem cell
Self-
renewal
Progenitor
cell

FIGURE 1.1
Nat Biotechnol 2014;32(8):795—803.

only dependent on factors promoting stemness but is
also a result of factors inhibiting differentiation path-
ways. Hence, in homeostasis, the underlying relation-
ship between stem cell and niche accommodates
nuances and involves various elements influencing the
stem cell functional parameters: replicative capacity
and potency. However, when tissue is injured or
diseased, the niche actively engages stem cells; guides
their proliferation, migration, and differentiation; and
regulates their participation in tissue regeneration and
repair. Therefore, the niche should be regarded as a dy-
namic participant controlling stem cell number, fate, and
behavior in the health and disease of the tissue and the
organism.

1.2 Components of Stem Cell Niche

The stem cell niche is a complex, heterotypic, and
dynamic structure, which includes supporting ECM,
neighboring niche cells, secreted soluble signaling
factors (such as growth factors and cytokines), physical
parameters (such as shear stress, tissue stiffness, and topog-
raphy), and environmental signals (metabolites, hypoxia,
inflammation, etc.) (Fig. 1.1).”” Stem cell niches are highly

innervated and densely vascularized, thus are directly or
indirectly influenced by vascular and neural inputs.

Components of stem cell niche. Adapted from Lane SW, Williams DA, Watt FM. Modulating the stem cell niche for tissue regeneration.
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In addition to matrix and cell signaling elements
mentioned above, niche cells form functional units
within the stem cell niche. These are neighboring tis-
sue-specific stem or somatic cell populations that
interact with resident stem cells to regulate cell fate.
For example, mesenchymal stromal/stem cells in the
HSC niche or parenchymal hepatocytes in liver. In addi-
tion to stem cell themselves, niche cells provide a source
of physical and biochemical signals within the niche
microenvironment by building extracellular matrix
and producing cell surface or soluble signaling factors.

Importantly therefore, stem cell microenvironments
are highly dynamic and display temporal variations.
Such variations in direct cell—cell contacts and ECM
components, as well as their interaction with regulatory
molecules secreted by stem or niche cells and the spatial
organization of niche components, ultimately enable the
regulation of stem cells to render tissue homeostasis and
regeneration.’

2. BIOLOGY OF THE STEM CELL NICHE

2.1 Behavior of Stem Cells: Hierarchical
Versus Stochastic Model

Understanding developmental biology is an important
approach to fully comprehend the structure and function
of the human body developed from a single totipotent
stem cell, the zygote. The potency of a given cell to differ-
entiate into many specialized cells is defined by the de-
gree of its plasticity and versatility at various stages.
Totipotent stem cells are those with the greatest

Hierarchical Model

Stem cell O

Self
renewal

Transit
amplifying

Differentiated cells

Stochastic Model

differentiation potential and can differentiate into any
and all cells in an organism, plus the extraembryonic or
placental cells. Pluripotent stem cells can differentiate
into any cell within the three germ layers (endoderm,
mesoderm, and ectoderm). Embryonic stem cells (ESCs)
are pluripotent and can divide and differentiate into cells
of various types found in the body. Multipotent stem cells
are progenitor cells that can differentiate into numerous
cell types but within a similar “family” or lineage. Lastly,
unipotent stem cells, the most restricted precursor, can
only result in one cell fate. Unlike ESCs, stem cells from
adult tissues are multipotent or unipotent.

During development and in the healthy body, stem
cells can divide to produce new cells. This is a carefully
controlled process that allows the body to grow and to
replace lost or damaged cells during adult life. For the
body to maintain homeostasis, stem cells proliferate
before differentiating into a specific lineage, such that
the generation of differentiated cells and the mainte-
nance of stem/progenitor pools are balanced. Two
distinct models have been proposed to explain the line-
age choices of stem cells (Fig. 1.2). The hierarchical
model suggests a discrete arrangement of cells consist-
ing of slow-cycling stem cells that can self-renew exten-
sively, which also give rise to short-lived transit
amplifying progenitor cells that then further differen-
tiate into committed nondividing cells. The stochastic
model suggests that each stem cell chooses at random
between self-renewal and differentiation. In this model,
each individual clone will vary in size.

Recent lineage tracing studies have supported the
findings of the hierarchical model of stem cell behavior,

FIGURE 1.2 Hierarchial versus stochastic model for
behavior of stem cells.
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