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Preface

This is a textbook aimed at master’s-level students, including fourth-year UK
MSci degrees, of the chemical and related sciences suitable as an introductory
text for PhD students embarking on x-ray absorption fine structure (XAFS)
spectroscopy. The background should also appeal to established scientists
from other fields (environmental, life, and engineering sciences), wishing to
assess the potential of x-ray spectroscopy for their science. The chapters
progress initially through the history and principles of XAFS. The next two
chapters deal with experimental design: first, light sources and beamlines and
then at the experimental station itself. Chapter 5 provides the background to
the methods of extracting and using the results in materials and chemical
analyses. The final chapter provides a series of case studies to illustrate a variety
of applications. Each chapter concludes with a set of problems. There is a
strong emphasis on the need to make the right choices for experimental design,
and guidance provided to do so.

John Evans
Southampton UK
April 2017
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Introduction to X-Ray Absorption Fine
Structure (XAFS)

1.1 Materials: Texture and Order

Today, research laboratories have powerful techniques for establishing the
chemical nature and structure of pure materials. Our view of chemical structure
is formed around the results of x-ray diffraction, recorded from single crystals
or from polycrystalline powders. Structures in the liquid phase can be inferred
from expectations for bond lengths and angles derived from crystallography;
to do so, information is gathered about the local symmetry, atomic connectivity,
and proximity in the material derived from structurally sensitive spectroscopies,
particularly nuclear magnetic resonance (NMR) and infrared (IR) and Raman
vibrational spectroscopies.

But many materials with a function are textured, such as pigments in paint-
ings in the Louvre, a stained glass window in Westminster Abbey, an automo-
tive exhaust catalyst, a dental filling, and others in nature, such as mineral
inclusions or the shells of mollusks. They possess identifiable local structures
on the A scale that form the basis of their capabilities. However, these may be
randomly spread through their three-dimensional shape or, alternatively, be
located in a particular region, such as at a surface. Correlating the structure
and the function of materials is a key to the design of further development, as
well as providing its own intrinsic scientific elegance.

X-ray absorption fine structure (XAFS) spectroscopy has developed to the
point when it can be applied to probe complex and faceted materials, for exam-
ple, to reveal chromophores in glass and to probe the organic-inorganic com-
posites in shells. In this book, the aim is to guide the readers to identify whether
and how the technique might be used to advantage to study the materials that
interests them within this wide spectrum of samples.

X-Ray Absorption Spectroscopy for the Chemical and Materials Sciences, First Edition. John Evans.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
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1.2 Absorption and Emission of X-Rays

About 100 years ago, with the discovery of x-ray absorption (XAS) and emis-
sion (XES) spectroscopies, observation of the absorption and emission of
x-rays were at the forefront of atomic physics, rather than the basis of materials
characterization. The observations of the x-ray absorption edge of elements
were first made by Maurice de Broglie in 1913 and published in 1916;[1] the
elements were the silver and bromine in a photographic plate. Moseley[2]
measured the energies of the emissions of over 40 elements and showed that
there was a square root relationship with the atomic number of the element;
tragically, his further contributions were cut short by a sniper at the Battle of
Gallipoli in 1915. W.H. and W.L. Bragg had also noted that x-ray emission lines
were also characteristic of an element.[3] Hence, both the absorption edge and
the emission lines had been shown to provide a means of elemental speciation
of sites.

Shortly thereafter the group of Manne Siegbahn at Lund improved the reso-
lution of the crystal spectrometers to 1/10,000 allowing them to establish that
the absorption edge position was chemically as well as elementally dependent;
this was initially observed for allotropes of phosphorus, reported by Bergengren
in 1920. In the next year, Lindh reported a chemical shift of 5.4V between Cl,
and HCI. The use of edge positions for chemical speciation was thus estab-
lished and by the mid-1920s the energies of emission lines were also shown to
display a chemical shift.

1.3 XANES and EXAFS

In 1920, Fricke published photographic measurements of K absorption edges of
elements between magnesium and chromium,[4] and Lindh reported structures
around the Cl K edges. These reports showed fine structure both before and
after the absorption edge energy, and XAFS (x-ray absorption fine structure) had
been identified. Most photographic plates with the x-ray spectrum dispersed
across them showed a bright line, marking the maximum in the x-ray absorption
and thus little darkening of the photographic plate. For some samples, for exam-
ple, the Ca K edge in calcite and gypsum, this feature was especially intense and
by 1926, it was known as the white line.[5] Lindsay and van Dyke also reported
features up to nearly 50 volts above the first main feature of the edge. Two years
later, Nuttall[6] reported that the potassium K edges post-edge features could be
used to distinguish between different minerals, and that the “fine structure...
extended over a range of about 67 volts” And in 1930 Kievert and Lindsay[7]
observed fine structures in metals extending to about 400 eV to higher energy of
the absorption edge. Hence, by 1930 most of the core characteristics of XAFS
spectroscopy had been identified, apart from polarization effects.
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Figure 1.1 The normalized W L; edge x-ray absorption spectrum of a solution of
(NBuy),[WO,] (10 mM) in acetonitrile (Source: Diamond Light Source, B18; data from
Richard lIsley).

An example of an XAFS spectrum is shown in Figure 1.1 for the tungsten L;
edge of an acetonitrile solution of (NBuy),[WO,]; the L; edge is a transition of
a 2p electron of the absorbing atom, tungsten in this example. The technique
pinpoints the anion containing the absorbing atom and the solvent and counter
ion do not interfere. This spectrum shows some of the characteristic compo-
nents that might be observed associated with an absorption edge. The x-ray
absorption near-edge structure (XANES) is dominated in this case by an exam-
ple of a white line, due to an intense (Laporte-allowed) transition to vacant 5d
states. The extended x-ray absorption fine structure (EXAFS) has been
expanded vertically to become visible at higher energies. Each of these types of
features contributes to the information than can be derived from the entire
spectrum.

1.4 Information Content

It was quickly recognized that x-ray spectra provided information about atomic
energy levels, as commented by W.H. Bragg.[3] It was also noted that the posi-
tion and shape of the XANES features at the absorption edge were dependent
upon the local environment and on the effective charge on the absorbing atom.
More problematical was a working explanation of the extended structure,
EXAFS. There were three possibilities proposed:

1) The peaks above the edge were due to additional atomic transitions.
However, Coster and van der Tuuk[8] showed that this was a minor
contribution in their study on argon gas.

3
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2) The oscillations were due to long-range periodicity through the sample, as
described by Kronig in 1931.[9]

3) Instead the oscillations were due to short-range electron scattering, as
Hartree, Kronig, and Petersen reported in 1934, thus accounting for EXAFS
features up to 200eV above the Ge K edge in molecular GeCl,.[10]

The dichotomy between local- and long-range order explanations for solid-
state arrays and molecular materials remained for about 40 years. The basis of
the current understanding emanates from analyses by Stern and his co-work-
ers, Sayers and Lytle, in 1970 and published in 1974-1975.[11-13] The key
aspects of this development were the demonstration of the short-range order
theory for all materials and the efficacy of Fourier transform methods for dis-
playing the differing oscillations in an EXAFS patterns as distinguishable
interatomic distances. In Figure 1.1, the EXAEFS features are dominated by a
single damped oscillation, which is due to the scattering between the tungsten
and oxygen atoms in the anion. Hence the method provides measurement of
that bond-length in solution and other disordered media.

1.5 Using X-Ray Sources as They Were

Viewing that oscillation in Figure 1.1, it is evident that EXAFS features are
weak and thus a high signal/noise ratio is required to reliably extract the poten-
tial information in a XAS spectrum. Until 1970, all XAS measurements utilized
laboratory x-ray tubes. For x-ray spectroscopy it is the brehmsstrahlung back-
ground that provides the necessary range of x-ray energies, rather than the
more intense emission lines used for x-ray diffraction. The combined charac-
teristics of weak sources and weak signals severely limited the application of
XAFS. But the breakthrough in understanding provided by Stern added to the
impetus for finding an experimental solution.

Much higher intensity sources were in prospect from synchrotron accelera-
tors, an effect first demonstrated in 1947.[14] This report, from the General
Electric Company, described a brilliant white spot emanating from the tangent
point of the orbit in a 70 MeV device of radius 29.2cm. When synchrotrons
first became available as x-ray sources in the 1970s, the effect was dramatic.
For example, the experimental backdrop to the theoretical developments was
a suite of three x-ray spectrometers at the Boeing Scientific Research
Laboratories. Lytle later offered the following observation[15] about an
experimental trip to the then new x-ray spectrometer at Stanford Synchrotron
Radiation Laboratory (SSRL) in the early 1970s: “In one trip to the synchro-
tron we collected more and better data in three days than in the previous ten
years. | shut down all three X-ray spectrometers in the Boeing laboratory.
A new era had arrived!”



