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Preface

We are most gratified by the response to the initiation of this series of volumes
presenting recent developments and new concepts in microbial ecology . Favorable
reactions have been expressed in both oral and written communication, and Ad-
vances in Microbial Ecology thus seems to be providing a worthwhile outlet in a
rapidly growing field of microbiology and environmental sciences.

The growing importance of microbial ecology is evident in many ways. Uni-
versity personnel are expanding their programs and increasing the number of
research topics and publications. Substantial numbers of industrial scientists
have likewise entered this field as they consider the microbial transformation of
chemicals in waters and soils and the effects of synthetic compounds on natural
microbial communities. Agricultural, medical, dental, and veterinary practitioners
and scientists have also been increasing their activity in microbial ecology because
of the importance of the discipline to their own professions. In addition, govern-
mental agencies have expanded regulatory and research activities concerned with’
microbial ecology owing to the importance of information and regulations fo-
cused on the interactions between microorganisms in nature and particular en-
vironmental stresses.

The present volume maintains the approach formulated originally by the
International Commission on Microbial Ecology. The reviews thus deal with both
basic and applied microbiology and are concerned with aquatic, oral, rumen, and
food ecosystems. Moreover, diverse groups of organisms are the subject of the
several reviews, and the approaches of the authors differ substantially according
to the professional interests, requirements, and scope appropriate for the various
disciplines. An international group of authors likewise contributes to the present
volume. It is the hope of the Editorial Board that future volumes will continue
to reflect this breadth: both basic and applied topics, diverse ecosystems, various
groups of microorganisms, and an international group of authors.

In this light, we encourage our colleagues in various aspects of microbial
ecology and environmental microbiology to submit titles and outlines for pro-
spective reviews to members of the Editorial Board. Now that the series is well

vii



viii Preface

established, we welcome unsolicited manuscripts but hope that prospective
authors will consult us before preparing full manuscripts so that an assessment
of the approach and relevancy of the manuscript can be made. We thus hope
that the Advances will continue to serve a useful function and will be a vehicle
not only for the dissemination of current information but also for the promo-
tion of the further development of microbial ecology.

The Editor and Editorial Board are appointed by the International Commis-
sion on Microbial Ecology for fixed terms. Moshe Shilo has now completed his
term on the Editorial Board, and the Commission, the Editor, and his colleagues
on the Editorial Board express to him their sincere gratitude for his cooperation,
professional advice, and willingness to help in initiating Advances in Microbial
Ecology .

M. Alexander, Editor
T. Rosswall

M. Shilo

H. Veldkamp
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Impact of Facultatively Anaerobic
Photoautotrophic Metabolism on
Ecology of Cyanobacteria
(Blue-Green Algae)

E. PADAN

1. Introduction

This review attempts to evaluate the ecological importance of a recently dis-
covered physiological character in cyanobacteria (blue-green algae), anaerobic
photoautotrophic metabolism, by considering the possible expression of the
character in the natural environment and its selective value to the organism.
In striving for clarity and emphasis, this analysis must concentrate on major
factors and may be oversimplified. Nevertheless, as in literature, theater, and
other fields of human endeavor, if the ideas put forward are understood and
elicit a response, the effort will have been worthwhile.

Cohen er al. (1975a) demonstrated that a cyanobacterium, Oscillatoria
limnetica, is capable of anoxygenic CO, photoassimilation with sulfide as an
electron donor in a photosystem-I-driven reaction. This reaction has since been
thoroughly investigated (Cohen et al., 1975b; Oren et al., 1977 ; Oren and Padan,
1978; Belkin and Padan, 1978). More recently, additional cyanobacteria were
shown to possess this physiological character (Castenholtz, 1976, 1977; Garlick
etal.,1977).

E. PADAN e Department of Microbiological Chemistry, The Hebrew University-Hadassah
Medical School, P.O.B. 1172, Jerusalem, Israel.



2 E.Padan

2. Aquatic Systems with Alternating Photoaerobic-Photoanaerobic
Conditions

A light-dependent sulfide-utilizing metabolic mechanism is most likely to be
expressed in sulfide-rich ecosystems with light penetration. As sulfide is readily
oxidized by O,, the maintenance of a particular sulfide concentration in a
habitat is determined by the ambient O, tension. Thus, a gradient of O, is often
accompanied by a gradient of sulfide under natural conditions. Furthermore,
sulfide accumulation occurs frequently under anaerobic conditions when bio-
logical and chemical activities decompose organic material and/or reduce oxidized
sulfur compounds. With the enrichment in sulfide, there is a sharp discontinuity
in the redox potential between the aerobic and sulfide-containing habitats. The
redox potential of the latter can reach ~200 mV and even lower values (Baas
Becking and Wood, 1955; Fenchel and Riedl, 1970; Fenchel, 1971; Gest, 1972;
Pfennig, 1975; Cohen et al., 1977a). The photic sulfide-rich semianaerobic to
anaerobic situation is very characteristic of transparent water bodies which, with
limited mixing, can become closed systems with respect to air.

2.1. Hot Sulfur Springs

Hot sulfur springs provide a familiar example of a gradient in sulfide con-
centration. Castenholtz (1976) described alkaline and neutral hot springs in
New Zealand, with particular attention to some from the central volcanic zone
of North Island with up to 2 mM sulfide at the source and to other springs from
southwest Iceland with lower sulfide concentrations of up to 0.3 mM. In the
Yellowstone area of the United States (Castenholtz, 1977) (Fig. 1), the source
waters of the Upper Terrace of Mammoth Springs have pH values ranging between
6.2 and 6.8 with a mean sulfide concentration of 56 uM and a maximum con-
centration of 0.13 mM. Acidic hot springs containing sulfide are widely distributed
(Castenholtz, 1969). As sulfide is readily oxidized by O, , the sulfide concentra-
tion in hot springs decreases with distance from the source; there is a decrease in
temperature with a concomitant increase in O, content and pH (Castenholtz,
1977; Fig. 1). Hence, sulfur springs provide a gradient of conditions from the
photoanaerobic sulfide-rich source waters to the photoaerobic waters downstream.

2.2. Stratified Lakes

The photoanaerobic sulfide-rich situation is exemplified in many lakes
which undergo thermal stratification. [The limnological terminology is that of
Hutchinson (1967).] The stratification pattern in lakes varies with different
latitudes, altitudes, lake depths, and solutes. However, the summer stratification
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Figure 1. Predominant phototrophs in various temperature zones of springs in the Upper
Terrace, Mammoth (Yellowstone National Park, U.S.A.). Each vertical rectangle represents a
spring with the source at the top, declining in temperature (toward base) as in the drainway,
and along the edges and vertically in hot pools. The sulfide concentration in mg/liter is indi-
cated for each source and also at some species borders at lower temperatures. The pH range
at the sources was from 6.2 to 6.7 except for nos. 14 and 11 (pH 6.8), no. 20b (6.9), and
no. 20a (7.0). The specific conductance (umhos/cm, 25°C) of these waters ranged from
about 2200 to 2600. The species key: C, Chromatium sp.; P, Phormidium sp.; Os, Oscilla-
toria sp. The blank areas near some sources lack phototrophs but may include nonphoto-
synthetic bacteria. From Castenholtz (1977).

cycle in temperate lakes may serve as an example of the stratification process.
After the spring overturn, warming of the upper water layers yields an upper
layer (epilimnion) of less dense, freely circulating waters, an intermediate layer
(metalimnion) with a temperature gradient (thermocline), and a noncirculating
colder, denser bottom layer (hypolimnion). The thermal gradient causes a density
stratification resulting in isolation of the hypolimnion. In shallow eutrophic lakes,
photoanaerobic conditions may develop both in the stagnant water layer and in
the mud. Density stratification in lakes may also be due to a chemical gradient
(chemocline) (Hutchinson, 1967; Cohen ez al., 1977a b) (Fig. 2).

Inherent to the physical parameters governing the lake system, the stratified
situation is very often unstable with time. Aerobic and anaerobic conditions
alternate in accordance with changes in the stratification. A few lakes do not
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Figure 2. Vertical distribution of temperature, chlorosity, H; S, O, pH, and £}, at height of
stratification, April 4, 1974, in the Solar Lake (Israel). From Cohen et al. (1977a).

undergo overturn (amictic lakes); however, most lakes mix partly (meromictic
lakes) or completely (holomictic lakes) once or twice yearly. In lower latitudes,
mixing may occur more frequently (oligomictic lakes). In the equatorial region’s
shallow eutrophic lakes undergoing daily overturn (polymictic lakes), there is
a daily cycle of stratification and holomixis with daily fluctuations in C, tensions
(Baxter et al., 1965; Talling e al., 1973; Viner and Smith, 1973 ; Ganf and Viner,
1973; Ganf and Horne, 1975; Reynolds and Walsby, 1975; Greenwood, 1976).
The O, regime in Lake George (Uganda), a polymictic lake, has been thor-
oughly studied (Burgis ef al., 1973; Viner and Smith, 1973; Ganf and Viner,
1973; Ganf, 1974ab; Ganf and Horne, 1975; Greenwood, 1976) (Fig. 3). At
dawn the water column of Lake George is isothermal; from 10.00 hr onward
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there is a progressive build-up of thermal stratification which breaks down in the
evening, so that at 18.00 hr the water column is isothermal again (Fig. 3a). There
is a stratification in O, tension corresponding to the thermostratification of the
water column (Fig. 3b). With the frequent fluctuations in O, tension imposed
by this daily cycle, O, levels fall below saturation value, but usually not to the
anaerobic level. However, Ganf and Viner (1973) have shown that the O, budget
of the water column is very delicately balanced. The diurnal changes in condi-
tions may cause anaerobiosis and resultant fish mortality. The mean O, content
of the water column during the night is 13 g/m?. The mean O, consumption of
the upper 5 cm of a 1-m? area of bottom mud is 5 g during the first hour of
restored contact with O,. If wave action at the sediment-water interface is
sufficient to suspend this surface mud in the water column even for an hour, a

a
o ;
S
100 +
,.:5
200}
‘g L
b i ey L W 0
a 9.00 13.00 17.00 21.00
a
b
0 L T,
B .
_— « o
100: .
200F + - :
8.00 12.00 16.00

Time of day (hours)

Figure 3. Diurnal vertical distribution of temperature, oxygen, pH and chlorophyll a in
Lake George (Uganda), March 26, 1968. a: Temperature—isopleth intervals are 1°C; dots
mark the points at which measurements were taken. b: Percentage oxygen saturation—iso-
pleth intervals are 1-10%. c: pH—isopleth intervals are 0,1. d: Chlorophyll a—isopleth inter-
vals are 40 mg/m3. From Ganf and Horne (1975).
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significant proportion of the available O, in the water will be consumed. Sedi-
ment disturbance to 5 c¢m and greater depths is not uncommon, and if this
sediment remains in suspension during the subsequent night, anoxia develops.
Thus, whenever the thermocline persists for several days, the hypolimnion is
completely deoxygenated, resulting in photoanaerobic conditions the following
dawn.

2.3. Aquatic Systems with Photoaerobic to Dark Anaerobic Alternations

In many aquatic systems, as in polymictic lakes, anaerobic sulfide-rich con-
ditions are often established during the night. These are separated in time from
the daily aerobic photic conditions. However, an interval of photic anaerobiosis
may be expected at dawn. Thus, the photosynthetic community is exposed to
frequent anaerobic conditions. In stratified eutrophic lakes, fluctuating anaerobic
conditions are not uncommon even in the epilimnion (Hutchinson, 1967; Fogg
and Walsby, 1971; Sirenko, 1972; Reynolds and Walsby, 1975; Whitton and
Sinclair, 1975).

The cycle described above is typical of very shallow bodies of water of
several centimeters’ depth, covering large areas of the world, i.e., sea marshes
of estuaries, mangroves, and rice paddies. These systems, often rich in organic
matter, undergo very marked O, tension fluctuations within a daily cycle
(Singh, 1961; Fogg et al., 1973; Brock, 1973a; Reynolds and Walsby, 1975).

The shallow marshes behind the beach line of the Texas coast, with limited
connections to the Gulf of Mexico, are an example (Odum, 1967). In these
millions of acres of shallow polluted marine waters, the living community is
compressed into a film which may be less than 10 cm deep. The shallowness of
the water column amplifies the diurnal ranges of properties responding to the
daily insolation cycle.

Thus, the shallower the water, the greater becomes the diurnal range of tem-
perature, oxygen, and pH. ... There is a hyperbolic relation of these ranges
decreasing with depth. High ranges produce almost anaerobic conditions at
night, oxygen being used as fast as it diffuses into the film. Since films can-
not have large radii for their eddies, mixing even in strong winds is more
laminar, and consejuently rates of reaeration per area are small. Thus, one
finds an apparent paradox that the thinner the water film, the more tendency
it has to function anaerobically at night. (Odum, 1967)

2.4. Aquatic Systems with Very Short Anaerobic Exposures

Contiguous aerobic and anaerobic water layers are not completely separable
from each other. Thus, short-term exposures to anaerobic conditions can be
expected for communities living mainly under photoaerobic conditions, while
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organisms of photoanaerobic layers can also be exposed to temporary aerobic
conditions. Changes in conditions may be due to vertical movements of the
thermocline (Serruya, 1975), affecting populations living in the metalimnion,
lower parts of the epilimnion, or upper parts of the hypolimnion. Vertical
migration of the organisms, such as those of cyanobacteria, may have similar
effects (Fogg and Walsby, 1971; Burgis et al., 1973; Reynolds and Walsby , 1975;
Walsby, 1975).

2.5. Sediments

Alternations in O, conditions described above for the water layers are
commonly found in the mud bottoms (Baas Becking and Wood, 1955; Wood,
1965; Fenchel and Riedl, 1970; Fenchel, 1971, Sirenko, 1972; Burgis er al.,
1973; J¢rgensen and Fenchel, 1974; Pfennig, 1975; Viner, 1975; Whitton and
Sinclair, 1975; Cohen et al., 1977¢c; J¢rgensen, 1977; Jprgensen and Cohen,
1977). The extent of light penetration into the mud layer appears to be a

J
=100 0 +400mV 3V,

Figure 4. Vertical distribution of blue-green algae and metazoan species from Wrightsville .
(McCrary’s) mudflats (North Carolina, U.S.A.), October. From Fenchel and Riedl (1970).
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significant factor with respect to the upper surface layer (Fenchel and Straarup,
1971) and the undisturbed mud-water interface of shallow water bodies. Re-
cently, Fenchel and Riedl (1970) (Fig. 4) described a “thiobiosis”” with sulfide
concentrations of 10 mM, with occasional exposure to light penetration possible.
This habitat is found below an oxidizable surface layer of sand in the littoral
zone of many seas. Alternation of O, tensions in the benthic habitats occurs
in cycles similar to those of the water body (Fenchel and Riedl, 1970; Fenchel,
1971; Serruya et al., 1974). Phototactic or photophobic vertical movements
of organisms through the benthic substrate expose them to a steep gradient of
redox potential as in the water column (Castenholtz, 1969; Sournia, 1976).

2.6. Summary

Two extremes of light and O, conditions in aquatic systems have been
described. Permanent photic aerobic conditions are found, as in the epilimnion
of many lakes or the waters of the open seas. In contrast, stable sulfide-rich
photoanaerobic conditions are found, as in the source waters of hot springs and
the monimolimnion of meromictic lakes. In addition, there is a spectrum of
combinations of oxygenated and anoxygenated conditions. The more frequent
the alternations in conditions, the less possible it is to characterize the ecosystem
as photoaerobic or photoanaerobic, and ecosystems with intermediate conditions
must be recognized. These ecosystems are of global occurrence and of vast dimen-
sions; for example, the mangroves, estuaries, and marine sediments (“thiobioses™)
mentioned above. In the future, more attention must be given to these important
intermediate combinations of photoanaerobic conditions than has been done
previously.

3. Predominance of Cyanobacteria among Phototrophs in Aquatic
Systems with Alternating Photoaerobic-Photoanaerobic
Conditions

In this section, data are compiled on the distribution of the different photo-
trophic types, i.e., photosynthetic bacteria, cyanobacterig, and eucaryotic
phototrophs, found in the selected habitats with the different combinations of
photoanaerobic conditions described in Section 2.

3.1. Phototrophs in Hot Sulfur Springs

The distribution of phototrophic organisms in neutral and alkaline hot sulfur
springs of New Zealand, Europe, and'the United States has been described



