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- PREFACE

At the outset I would like to presume the position of at least the caring, if not always
humble, ““midwife’” at the birth of viroid research. Without further claims of any closer
lineage, that position in itself has permitted me to bear direct witness to not only the pains
and anxieties normally associated with such creative activities but also the fleeting vet sublime
exhilaration that is born of such wondrous moments. It is my view that viroids becatse of
their humble beginnings in the Plant Kingdom have not as yet reached a righiful pesition
of full acceptance in the biological world. This is in part due to absence of a direct bloodline
to relatives affecting members of the Animal Kingdom. From the perspective of an advocate
of the existence of great unifying principles of biology. 1 retain'the vision that this lmkage
will yet be made. For this reason, I have coerced Prof. R. Marsh to contribute a brief chapter
on the most analogous agents in animal systems for which research data are available, namely
the scrapie disease. g g

Once the viroids were recognized as discrete biochemical entities in the early 1970s. the
science of a biological phenomenon seemingly advanced to a period mirroring the encrgies
of adolescence: This period of viroid research development was reflective of some of the
tribulations resident to such a stage in which hypotheses, propositions, and even personal
intuitions were presented in spirited dialogue; and, as with teenage romance, it became oo
serious, too soon, only to fade too quickly.

But the undeniable forces of maturation to which we are all inevitably held captive had
been primed. Substantive physical measurements established'a legitimate position for viraids
at least as an interesting class of unique RNAs from which structural and conformation:)
information might be derived. We are presently heir to that treasure of information as
presented in the chapter contributred by Dr. Paul Keese and Prof. Symons.

And yet without the further investment of these resources, we wouid be soon left with
but a dwindling fortune to will to the succeeding generation of true believers in the basic
importance of viroids in the grand scheme of biology. And so when I was approached with
the siren and at the same time ominous proposition by CRC Press for this volume, [
immediately enlisted the active participation of Robert, Hugh, and Stephen to comprise yet
another set of ‘‘four evangelists.”” In this way it was hoped that a truth of purpose might
emerge from a consensus position. My only directive was to encourage not simply another
review, but a personal perspective of interpretive data and a willingness to offer explanation
and even speculation on the significance of viroid synthesis and biological interacuions
Viroid replication viewed as an RNA processing event has been contributed by Prot. Rob
ertson and Dr. Andrea Branch. We have chosen to package the responses of plants to viroids
with the broader agricultural insights of Dr. Garnsey and Dr. Randles, and from a more
cellular position, where it has been my pleasure to interact once again with my unique friend
Prof. Conejero.

If we had hoped for one unifying theme among these chapters, it would be contained in
the belief that the future of viroid research resides in the basic biochemical interactions with
the plant cell that.result in processes which alter growth and development, some of which
may be labelled as pathological reaction® And that these expressions, which we hope are
made more relevant by this volume, offer even more exciting challenges and resident rewards
than even the initial conception of viroids as entities would be our wish.

We would simply entreat the reader along with the fair Ophelia to not only “*let all ‘our’
sins be remembered’’ but also forgiven. )

2 May in 1986
Riverside, California
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I. INTRODUCTION

A. Viroids

Viroids (defined in the Glossary at the end of this chapter and listed in Table 1) are the
smallest known pathogens of flowering plants. Their history is brief but dramatic, both in
appreciation of their ecomonic impact and in the growth of knowledge concerning their
unique characteristics. Viroid-induced diseases were first recognized only recently with the
earliest reports dating back to 1922 for potato spindle tuber disease (see References 19 and
22 for a detailed account of the history of viroid diseases). Nevertheless, viroids have been
responsible for several economically serious diseases such as chrysanthemum stunt diseases
in the U.S. from 1945 to 1947* and cadang cadang disease of coconuts which has resulted
in the death of more than 30 million palms in the Philippines since its discovery in 1930.2¢
Cadang cadang disease remains uncontrolled and continues to spread (see Chapter 4).
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Table 1
LIST OF VIROIDS
No. of

Viroid* Abbreviation  nucleotides Ref.
Avocado sunblotch viroid ASBV 247 34
Chrysanthemum stunt viroid CSv 354,356 5.6
Citron variable viroid CvVaV N.D.c 7
Citrus exocortis viroid CEV 370—375  6,8-10
Coconut cadang cadang viroid® cccv 246,247 11
Coconut tianangaja viroid CTiv N.D.c 20,21
Columnea viroid Ccv N.D.c 12
Cucumber pale fruit viroid® CPFV 303 13
Hop stunt viroid HSV 297 14
Potato spindle tuber viroid PSTV 359 15,16
Tomato apical stunt viroid* TASV 360 17
Tomato planta macho viroid " TPMV 360 17

*  The disease agent of Burdock stunt has been considered to share some affinities
with viroids.™ The disease agent of chrysanthemum chlorotic mottle disease
has often been listed as a viroid.'® However, since these disease agents have
never been isolated, they are not included in this table.

® CCCV infections produce four major RNA components, all derived from the
infectious monomeric small form (D-O of 246 or 247 nucleotides). These
include monomers and dimers of both the D-O form and any of a set of larger
forms (D-41, D-50, or D-55) which contain a duplication involving 41, 50,
or 55 nucleotides. The causative agent (CTiV) of another disease of coconuts,
tinangaja®™ is approximately the same size as, and shows partial sequence
homology with, CCCV 2!

¢ CPFV is a sequence variant of HSV since the two viroids share 95% sequence
homology.'*'*

¢ In early reports, TASV was referred to as tomato bunchy top viroid. '

¢ N.D., not determined.

Although viroid diseases were initially linked to viruses due to the virus-like symptoms
(see Chapter 3) and the small size of the causative agent, the distinctive features of potato
spindle tuber ‘‘virus’’ were made apparent by Diener in 1971, leading to the term vi-
roid. Similar properties were reported for the citrus exocortis and chrysanthemum stunt
agents.?® Since then, eight additional viroids have been recognized (Table 1). Furthermore,
there has been a rapid accumulation of information regarding viroid structure, replicaton,
and pathogenesis.

This chapter will present the most recent findings and postulations which attempt to relate
directly viroid structure to function. For a more general introduction to viroids, the reader
is referred to the excellent reviews of Riesner et al.,” Sianger,’® Diener,* Riesner and
Gross,*? and the book by Diener."

Summarizing the present state of knowledge, viroids can be distinguished from viruses

by:

1. Lack of mRNA activity. This has two important consequences. First, there is no
viroid-coded protein coat; a virus-coded protein coat has normally been associated
with virus survival and spread. Second, viroids rely completely on host factors for
their replication in contrast to viruses which have been shown to encode a viral-specific
polymerase in all cases where definitive results have been obtained.
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Table 2
LIST OF VIRUSOIDS
No. of
Virusoid Abbreviation nucleotides Ref.
Lucerne transient streak virus RNA 2 VvLSTV 324 39,45
Solanum nodiflorum mottle virus RNA 2 vSNMV* 378 40,4344
‘Subterranean clover mottle virus RNA 2 v(388)SCMoV* 388 41,48
Subterranean clover mottle virus RNA 2’ v(332)SCMoV* 332 41,48

Velvet tobacco mottle virus RNA 2 vVTMoV* 366,367 40,42,44

* vSNMV is a sequence variant of vVTMoV since they share 93% sequence homology.*
® Natural isolates of SCMoV contain either one or two virusoids.**

2.  Small size. With 246 nucleotides, CCCV D-O (Table 1, Figure 1) is less than one
tenth the size of the genomes of the smallest known viruses and bacteriophages such
as maize streak virus, a single-stranded (ss) DNA virus (2681 nucleotides,* 2687
nucleotides®), or a ssSRNA bacteriophage, MS2 (3569 nucleotides*®).

3. Increased yields and symptoms at elevated temperatures. At temperatures above
20°C and at least up to 35°C, the rate of viroid replication increases and hastens the
onset of symptoms.?*-**-3" This is in contrast to plant viruses where high temperatures
have been used as a method of curing seeds, bulbs, and cuttings of virus.

With the complete sequence of eight viroids (Figure 1) and more than 35 sequence variants
(see Glossary for definition), together with a wealth of structural data,®-*® viroids have
become one of the best structurally characterized groups of RNA molecules. The correlation
of structure to the biology of viroids, however, remains poorly understood. Despite this lack
of understanding, the total dependence of viroids on host functions, utilizing only sequence
and structural signals, indicates that plants can replicate RNA molecules and this opens up
the potential for biochemical control. It also suggests the ability of RNA sequences to act
directly as control elements in the entire replication cycle and pathogenic pathway involving
host range and symptom expression.

B. Virusoids

In addition to viroids, there is a second group of low molecular weight ssSRNAs associated
with plant diseases; these are the plant virus satellite RNAs (see Glossary; References 1 and
2). Although some of these RNAs also do not show mRNA activity, they differ from viroids
in two significant aspects: (1) they are dependent on a helper virus for their replication; (2)
they are encapsidated by either viral-coded or satellitt RNA-coded coat protein. Amongst
the satellite RNAs, the virusoids (see Glossary) show most similarity to viroids in being
covalently closed circular RNA molecules in the same size range, varying from 324 to 388
nucleotides (Table 2, Figure 2).

The first report of this new group of c1rcular RNAs was in 1981 with the discovery of
velvet tobacco mottle virus (VTMoV*?) in the desert regions of northern South Australia.
When total virion RNA was fractionated by polyacrylamide gel electrophoresis, two RNA
components were found, one being a single-stranded linear molecule of M, 1.5 X 10° and
the other a low molecular weight RNA subsequently shown to be single-stranded and circular
with 355 or 356 nucleotides.*>*> Re-investigation of two previously described viruses, so-
lanum nodiflorum mottle virus (SNMV4#°:43:44) and lucerne transient streak virus (LTSV?°45)
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8 Viroids and Viroid-Like Pathogens

showed that each contained a virusoid. The failure to detect virusoids in the previously
reported SNMV and LTSV was probably due to their small size and their confusion with
breakdown products of the genomic RNA.***” The most recently reported virusoids were
found associated with a new virus infecting subterranean clover (Trifolium subterraneum),
subterranean clover mottle virus (SCMoV*#®).

Of these four virusoid-containing viruses, only LTSV has been reported outside Australia
and New Zealand.*® They are considered to belong to the Sobemovirus group of plant viruses
with a unipartite ssSRNA genome of about 4400 nucleotides with a small viral protein (Vpg)
attached at the 5'-terminus.*

Virusoids were originally considered to be an essential component for infection, suggesting
that they acted in a bipartite relationship with the large genomic RNA rather than as a satellite
RNA.*" Subsequent data have shown that, at least in the cases of SNMV, LTSV, and
VTMoV, the large RNA component can replicate independently,**** whereas virusoids are
not infectious,'-** indicating that the virusoids of these three viruses are satellite RNAs.

Redently, the satellite RNA of tobacco ringspot virus (STRSV; Figure 3) has been shown
to have high sequence homology with a 50 nucleotide sequence in the virusoids of SNMV
and VTMoV*-57 which was somewhat surprising since sTRSV is associated with a different
group of plant viruses, the Neopviruses.*® Furthermore, although the encapsidated forms of
sTRSV are linear,**° abundant circular forms exist in vivo.>** Further data are needed to
determine if there are functional as well as structural similarities between viroids, virusoids,
and sTRSV.

II. PURIFICATION OF VIROIDS AND VIRUSOIDS

Viroids and virusoids exist mostly in infected plants in the circular monomeric plus form
with only low or negligible levels of linear monomers. Lower levels of monomeric minus
(complementary) forms and of oligomeric plus and minus forms have been detected by
hybridization analysis after fractionation of tissue extracts by gel electrophoresis.®'* One
exception is CCCV where the concentration of dimeric plus CCCV in coconut palms can
increase to levels similar to those of the monomer later in infection.”-*® Of the other viroids
and virusoids, dimers of ASBV, SNMV, and VTMoV can also be detected by staining after
gel electrophoresis of plant extracts®®™ (Figure 4).

A. Purification of Viroids
1. Preparation of Plant Extracts

A commonly used approach has been to prepare a partially purified nucleic acid extract
of infected plant tissue and then to purify the circular and linear forms of the viroid by gel
electrophoresis. Earlier procedures for the preparation of the partially purified extract”'’
contained a number of steps and required several days for completion. However, many of
these steps can be eliminated; e.g., DNase digestion of the extract to degrade DNA, pre-
cipitation of nucleic acids with cetyltrimethyl ammonium bromide (CTAB) chromatography
on CF-11 cellulose, and fractionation of nucleic acids into high and low molecular weight
fractions in the presence of 2 M salt at 0°C.

During the preparation of the partially purified extract, phenol is still the best deproteinizing
agent and it also has the advantage of removing considerable colored material. In order to
circumvent the use of large volumes of phenol when 500 g quantities or more of plant
material were used, we developed a two-step extraction procedure®-7*-”S which has proven
very effective for ASBV, CSV, CEV, and PSTV. In the first step, plant material was
homogenized in the presence of SDS a range of compounds to inhibit color development
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10 Viroids and Viroid-Like Pathogens

NUCLEIC ACID EXTRACT DIMER ASBV
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FIGURE 4. Purification of ASBV from extracts of infected avocado leaves.® (A) Partially purified nucleic acid
extract from 35 g leaves was electrophoresed on a 16 X 16 X 0.3 cm 5% polyacrylamide gel in 40 mM Tris-acetate,
2u mM sodium acetate, 2 mM EDTA, pH 7.5, at 25 mA for 16 hr. The gel was stained in 0.02% toluidine blue and
destained in water. The positions of the dimer ASBV, xylene cyanol FF marker dye (xc), ASBV, and 5S and 45 RNA
are shown. (B) Dimer ASBV and ASBV bands were eluted and run on a 90 mM Tris-borate, 2 mM EDTA, 7M urea,
5% polyacrylamide gel (20 X 40 X 0.05 cm) at 20 mA for 1.8 hr. The gel was stained with 10 pg ethidium bromide/
m¢ for 30 mifi, destained in water, and photographed under UV light. The positions of the circular (C) and linear (L)
forms of the dimer ASBV, ASBV, and an unidentified band X are given. The mobility of circular ASBV was 0.4
relative to the xylene cyanol FF marker dye. (From Bruening, G., Gould, A. R., Murphy, P. J., and Symons, R. H.,
FEBS Lett., 148, 71, 1982. With permission.) S

and MgCl, to inhibit the solubilization of pectins. Addition of NaCl to 0.5 M caused the
precipitation of proteins- as a SDS complex.” The nucleic acids in the supernatant were
concentrated by ethanol precipitation and further deproteinized with phenol-CHCI, in a
volume about 10% of the original aqueous extract. After dialysis of the aqueous phase and
a further ethanol precipitation step, the partially purified extract was ready for fractionation
by gel electrophoresis.

A variation of the final dialysis step was found to be very useful where a number of
smaller samples of about 25 g of plant material were being extracted.”” In this method, the
aqueous supernatant after phenol-CHCI, deproteinization was made to 6 M LiCl by the
addition of an equal volume of 12 M LiCl; the final concentration of 6 M LiCl was necessary
to ensure precipitation of low molecular weight RNAs. After 2 hr at 0°C, the precipitate
was collected by centrifugation, redissolved, and the nucleic acids precipitated with ethanol
prior to gel electrophoresis. We have also used this procedure extensively for the preparation

of nucleic acid extracts of avocado leaves for the indexing of ASBV by the dot-blot procedure -

using *P-cDNA probes.””
Where only a few grams of plant material were to be extracted, a procedure modified

®
.



