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Preface

In this third volume of 4 Course in Mathematical Physics I have attempted
not simply to introduce axioms and derive quantum mechanics from them,
but also to progress to relevant applications. Reading the axiomatic litera-
ture often gives one the impression that it largely consists of making refined
axioms, thereby freeing physics from any trace of down-to-earth residue and
cutting it off from simpler ways of thinking. The goal pursued here, however,
is to come up with concrete results that can be compared with experimental
facts. Everything else should be regarded only as a side issue, and has been
chosen for pragmatic reasons. It is precisely with this in mind that I feel it
appropriate to draw upon the most modern mathematical methods. Only
by their means can the logical fabric of quantum theory be woven with a
smooth structure; in their absence, rough spots would.inevitably appear,
especially in the theory of unbounded operators, where the details are too
intricate to be comprehended easily. Great care has been taken to build up
this mathematical weaponry as completely as possible, as it is also the basic
arsenal of the next volume. This means that many proofs have been tucked
away in the exercises. My greatest concern was to replace the ordinary cal-
culations of uncertain accuracy with better ones having error bounds, in
order to raise the crude manners of theoretical physxcs to the more cultivated
level of experimental physics.

The previous volumes are cited in the text as I and II; most of the mathe-
matical terminology was introduced in volume I. It has been possible to
make only sporadic reference to the huge literature on the subject of this
volume—the reader with more interest in its history is advised to consult
the compendious work of Reed and Simon [3].

Of the many colleagues to whom I owe thanks for their help with the
German edition, let me mention F. Gesztesy, H. Grosse, P. Hertel, M. and T.

iii



iv Preface

. Hoffmann-Ostenhof, H. Narnhofer, L. Pittner, A. Wehrl, E. Weimar, and,
last but not least, F. Wagner, who has transformed illegible scrawls into a
calligraphic masterpiece. The English translation has greatly benefited from
the careful reading and many suggestions of H. Grosse, H. Narnhofer, and
particularly B. Simon.

Vienna Walter Thirring
Spring, 1981
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Introduction

1.1 The Structure of Quantum Theory

The structure of quantum mechanics differs startlingly from that of the .
classical theory. In volume I we learned that in classical mechanics the -
observables form an algebra of functions on phase space (p and g), and states
are probability measures on phase space. The time-evolution is determined
by a Hamiltonian vector field. It would be reasonable to expect that atomic
physics would distort the vector field somewhat, or even destroy its Hamil-
tonian structure; but in fact the break it makes with classical concepts is
much more drastic. The algebra of observables is no longer commutative.
Instead, position and momentum satisfy the famous commutation relations,
qp — pq = ih. (1.1.1)
Since matrix algebras are not generally commutative, one of the early
names for quantum theory was matrix mechanics. It became apparent in
short order, however, that the commutator (1.1.1) of finite-dimensional
matrices can never be proportional to‘the identity (take the trace of both
sides), so attempts were then made to treat p and g as infinite-dimensional
matrices. This proved to be a false scent, since infinite-dimensional matrices
do not provide an ideal mathematical framework. The right way to
proceed was pointed out by J. von Neumann, and the theory of C* and W*
algebras today puts tools for quantum theory at our disposal, which are
polished and comparatively easy to understand. There do remain a few
technical complications connected with unbounded operators, for which
reason the Weyl relation ' .
e™gifrgiad — (f(P—2) ‘ (1.1.2)

(setting h = 1) is a better characterization of the noncommutativity.
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. Admittedly, Schrodinger historically first steered quantum mechanics in
a different direction. The-equation that bears his name treats p and g as
differentiation and multiplication operators acting on the Schridinger
wave-function i, which has the interpretation of a probability amplitude:
It is complex-valued, and |y|? is the probability distribution in the state
specified by . Superposition of the solutions of the equation causes proba-
bility interference effects, a phenomenon that can not be understood
classically at all. Later, y was characterized axiomatically as a vector in
Hilbert space, but the peculiar fact remained that one worked with a com-
plex Hilbert space and came up with real probabilities.

At long last the origin of the Hilbert space was uncovered. A state would
normally be required to be represented as a positive linear functional, where
positivity means that the expectation value {a®) of the square of any real
observable a must always be nonnegative. It turns out that to each state there
corresponds a representation of the observables as linear operators on some
Hilbert space. (It is at first unsettling to learn that each state brings with it
its own representation of the algebra characterized by (1.1.2), but it also
turns out that they are all equivalent.) The schema of quantum theory thus
adds no new postulates to the classical ones, but rather omits the postulate
that the algebra is commutative. As a consequence, quantum mechanically
there are no states for which the expectation values of all products are equal
to the products of the expectation values. Such a state would provide an
algebraic isomorphism to the ordinary numbers, which is possible only for
very special noncommutative algebras. The occurrence of nonzero fluctu-
ations (Aa)? = (a*) — {a)?is in general unavoidable, and gives rise to the
indeterministic features of the theory. The extremely good experimental
confirmation of quantum mechanics shows that the numerous paradoxes
it involves are owing more to the inadequacy of the understanding of minds
raised in a classical environment than to the theory. ¢ '

Quantum theory shows us where classical logic goes awry; the logical
maxim tertium non datur is not valid. Consider the famous double-slit
experiment. - Classical logic would reason that if the only and mutually
exclusive possibilities are “the particle passes through slit 1” and “the particle
passes through slit 2,” then it follows that “the particle passes through slit 1
and then arrives at the detector” and “the particle passes through slit 2 and
then arrives at the detector” are likewise the only and mutually exclusive
possibilities. Quantum logic contests this conclusion by pointing to the
irreparable change caused in the state by preparing the system to test the
new propositions. The rules of quantum logic can be formulated just as
consistently as those of classical logic. Nonetheless, the world of quantum
physics strikes us as highly counterintuitive, more so even than the theory of
relativity. It requires radically new ways of thinking, ‘

The mathematical difficulties caused by the noncommutativity have all
been overcome. Indeed, the fluctuations it causes often simplify problems.
" For example, the fluctuations of the kinetic energy, the zero-point energy,
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have the effect of weakening the singularity of the Coulomb potential and
eliminating the problem of the collision trajectories, which are so trouble-
some in classical mechanics. Quantum theory guarantees that the time
evolution can be continued uniquely from t = — oo to t = + oo for (non-
relativistic) systems with 1/r potentials. In a certain sense this potential
energy is only a small perturbation of the kinetic energy, and free particles
can be used as a basis of comparison. Calculations are sometimes much easier
to do in quantum theory than in classical physics; it is possible, for instance,
to evaluate the energy levels of helium with fantastic precision, whereas only
relatively crude estimates can be made for the corresponding classical
problem. - . ;

1.2 The Orders of Magnitude of Atomic Systems

One can come to a rough understanding of the characteristics of quantum-
mechanical systems by grafting discreteness and fluctuations of various
observables onto classical mechanics. Their magnitudes depend on Planck’s
constant /, which is best thought of as a quantum of angular momentum,
since quantum-mechanically the orbital angular momentum L takes on only
the values Ih, [ =0, 1, 2,.... Suppose an electron moves in the Coulomb
field of a nucleus of charge Z; then the energy is
pp, L2 2 |
o 4+ e - 1.2.1)

For circular orbits (p, = 0), quantization of the angular momentum means
that

P Zée

E@r) = i (1.2.2)
At the radius
Pn* P, !
r= m = 7, (1.2.3)

where r;, is known as the Bohr radius, the energy is minimized, with the
value
(Ze?Y» m -Z*¢? Z*
Y R e L = oo

2 12’!2 12 2’6 12 (Rydbel'g Ry) (1 24)
(Balmer’s formula). If / = 0, then we would find r = 0 and E = — oo, except
that the stability of the system is saved by the inequality for the fluctuations
Ap Aq > h/2, the indeterminacy relation, which follows from (1.1.1). This
makes {p?) > (Ap,)* =~ h*/r?, the zero-point energy, and hence this part of
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the kinetic energy contributes as much as a centrifugal term with [ = 1.
This argument actually gives the correct ground-state energy. The reasoning
is of course not a mathematically rigorous deduction from the indeterminacy
relation, as the average of 1/r could conceivably be large without Ar being
small. We shall later derive generalizations of the inequality Ap Aq > h/2,
which will justify the argument.

The virial theorem states that the velocity v of an electron is given classically
by : ‘

my? Z%*m Ze?
=v=Ta

7 = "E=3mE

The universal speed e?/h is about 1/137 times the speed of light. As Z increases,
the nonrelativistic theory rapidly loses its accuracy. Relativistic corrections,
entering through the increase of the mass and magnetic interactions, are
~v*/c? ~ 107 °Z2 For small Z they show up as fine structure of the spectral
lines, but their effect becomes pronounced for heavy nuclei, and when Z is
sufficiently greater than 137 the system is not even stable anymore. The
relativistic kinetic energy is \/m*c* + p*c? — mc?, which for large momenta
grows only as cp & ch/r. Equation (1.2.2) is accordingly changed to

(1.2.5)

which is no longer bounded below when Z > 137. The question of what
happens for such large Z can only be answered in the relativistic quantum

theory, and lies beyond the scope of this book.

If a second electron is introduced to form a helium-like atom, then the
repulsion of the electrons makes it impossible to solve the problem ana-
lytically. To orient ourselves and to understand the effect of the repulsion, let
us provisionally make some simplifying assumptions. Since an electron
can not be localized well, we can suppose that its charge fills a ball of radius R
homogeneously. Such an electronic cloud would produce an electrostatic

potential

_ie__'..iiz‘ <R
2R T2R\R)’ " "=

e
= = r>R

V(r) = (1.2.6)

H

(Figure 1). The potential energy of one electron and the nucleus is conse-
quently ZeV(0) = —3Ze?/2R. We can gauge the kinetic energy by reference
to the hydrogen atom, for which the following rule of thumb leads to the
correct ground-state energy: An electron cloud having potential energy
— Zé*r, requires a kinetic energy h%/2mr?. We set the kinetic energy equal
to 94%/8mR?, since R = 3r,/2 provides the same amount of potential energy.
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homogeneous
charge distribution
14 R
+ r
L s
R
3e
"R

Figure 1 The potential of a homogeneous charge distribution.

If the second electron is also a homogeneously charged sphere coinciding

with the first one, then the electronic repulsion is
‘ 2

ane? [ v ar vy =% 127
ne redr (r)—SR" (1.2.7)
0

" 47R3
Therefore we obtain the ratio
| Attraction of the electrons to the nucleus| 2-(3Ze?/2R) 5Z
Repulsion of the electrons iy 6e*/5R 2 ' (1.28)
and thus the total energy is
E(R) = kinetic energy + nuclear attraction + electronic repulsion

9h? 3Ze? 2
“2 g2 (1-55) e
"This has its minimum at the value R = R, = Ry/(Z — %), where
2 2
e P 272 - =L
E(Ryin) = —Ry-2Z (l SZ) ) (1.2.10)

If Z = 2, then R,;, = 5Ry/8, and the energy has the value —2Ry-$% =
—2Ry - 2.56. For such a primitive estimate, this comes impressively near to
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the experimentally measured —2Ry - 2.9, anid a helium atom is indeed only
about half as large as a hydrogen atom. Actually, however,evenif Z = 1 (H™)
the energy lies somewhat below — Ry while (1.2.10) gives only. —42Ry. In this
case the picture of two equal spheres is.not very apt, since the outer electron
will travel out to large distances. Nevertheless, nonrelativistic quantum
mechanics describes these systems very well.

If there are more than two electrons, then some of them must have spins
in parallel, and Pauli’s exclusion principle is of primary importance for
the spatial configuration of atoms; it says that no two electrons may have
the same position, spin, etc. An atom with N electrons and radius R has a
volume of about R*/N per particle. Electrons insist on private living quarters
of this volume, so Ag will be on the order of the distance to the nearest
neighbor, which is R/N'/3, This makes the zero-point energy of an electron
~h*N?/2mR?, as a rough approximation, and its potential energy
~ —e?Z/R. The minimum energy is attained at R, = h’N?*3/me’Z,
making the total energy of all the électrons

472 '
ERu) = — = Zm s, (1.2.11)

The value R, is an average radius, which goes as N~/ for N = Z, making
E ~ N7, Yet the outermost electrons, which are the important ones for
chemistry, see a screened nuclear charge, and the radii of their orbitals are
~h?/me*. Strangely enough, it is not yet known whether the Schrodinger
equation predicts that these radii expand, contract, or remain constant as
Z — o0. Their contribution of about 10 eV to the total energy (1.2.11), on
the order of MeV for Z ~ 100 is rather slight, however.
Chemical forces also arise from an energetically optimal comprormse
‘between electrostatic and zero-point energies. History has saddled us with a
misleading phrase for this, exchange forces. Let us now consider the simplest
molecule, H, that is, a system of two protons and one electron. There is
clearly a negative potential energy if the electron sits right in the middle of the
line between the two protons. But is it possible for the electron’s potential
energy to be sufficiently negative to make the total energy less than that of H,
or would its wave-function be too narrow, giving it an excessive zero-point
energy? To be more quantitative about this question, let us again imagine
~ that the electron is a homogeneously charged sphere with the potential
(1.2.6). The radius R is chosen the same as for H, so there is no difference
between this zero-point energy and that of hydrogen. If, as with H, we put one
proton at the center of the cloud (Figure 2a), the potential energy is eV(0).
Taking the Coulombic repulsion of the protons into account, we note that the
second proton feels no potential as long as it is outside the cloud, but when it
comes to within a distance r < R its energy increases, because
2

V() + V() + "7 > V(0). (1.2.12)
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electron cloud
a b

Figure 2 Two electron distributions assumed for Hj .-

Hence there is no binding. However, if the two protons are placed dia-
metrically across the center of the electron cloud, at radius r (Figure 2b), then
the total potential energy :

e? 3¢ [e*\[r\* é*
2V(r) + > =R + (E)(E) -+ o (1.2.13)

has the minimum

3e? 1 3e? .
~3R 2-27"]=- R’ 1.2 (1.2.14)

atr = 272/3. R, This is more negative than V(0), the energy with one proton
outside the sphere, by a factor 1.2, and so we expect HS to be bound. If the
total energy is now minimized with respect to R, then R, = Ry/1.2 and
E(Rp) = —(1.2)*Ry. The separation 2r of the protons at the minimum is
23R i = 1.57r,, which is significantly smaller than the experimental value
2r,. The binding energy ((1.2)> — 1)Ry also amounts to more than twice
the measured value, so the simple picture is not very accurate. - .
. Finally, consider the molecule H,, again assuming that the H atoms are

spheres. If they do not overlap, then the electrostatic energy is twice that of a
single H atom, and the two separate atoms exert no force on each other.
As the spheres are pushed together, the energy first decreases, since the
repulsion of the electrons is reduced (the energy of two uniformly charged
spheres at a distance r < 2R is less than e?/r), while the other contributions
to the energy remain unchanged. In order to find out how much energy can
be gained by making the spheres overlap, let us superpose them and place
the protons diametrically across their center at a distance r. As with the
helium atom, the electronic repulsion is 6e?/5r, and hence the total potential
energy is .

6e2  .err? e  6e?

VH,(r) = — —R— +2 Ts_ + i; + ﬁ. “ (1.2.15)
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The minimum at » = R/2 can now be compared with 2V(0):

R 3e? >
V,,,(z) = -2 R 1.1 (1.2.16)
The minimum in R is now attained at Ry/1.1, and the corresponding inter-
protonic distance 3r,/2- 1.1 = 1.36r, is in excellent agreement with the actual
distance. The resultant binding energy 2 Ry((1.1)> — 1) ~ 5.7eV is con-
sequently also fairly close to the measured energy of dissociation 4.74 eV.
Of course, it is necessary for the electrons in H, to have antiparallel spins, as
otherwise the exclusion principle would restrict the room they have to move
about in.

One lesson of these rough arguments is that delicate questions like that of
stability depend on small energy differences. It will require highly polished
calculational techniques to reach definitive conclusions.



