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Preface

Prior to the development of quantitative structural theories in the mid-18th century and
since, builders relied on an intuitive and highly developed sense of structural behaviour.
The advent of modern mathematical modelling and numerical methods has to a large
extent replaced this skill with a reliance on computer generated solutions to structural
problems. Professor Hardy Cross' aptly expressed his concern regarding this in the
following quote:

‘There is sometimes cause to fear that the scientific technique, the proud servant of
the engineering arts, is trying to swallow its master.’

It is inevitable and unavoidable that designers will utilize continually improving computer
software for analyses. However, it is essential that the use of such software should only be
undertaken by those with the appropriate knowledge and understanding of the
mathematical modelling, assumptions and limitations inherent in the programs they use.

Students adopt a variety of strategies to develop their knowledge and understanding of
structural behaviour, e.g. the use of:

e computers to carry out sensitivity analyses,

e physical models to demonstrate physical effects such as buckling, bending, the
development of tension and compression and deformation characteristics,

e the study of worked examples and carrying out analyses using ‘hand’ methods.

This textbook focuses on the provision of numerous fully detailed and comprehensive
worked examples for a wide variety of structural problems. In each chapter a résumé of the
concepts and principles involved in the method being considered is given and illustrated
by several examples. A selection of problems is then presented which students should
undertake on their own prior to studying the given solutions.

Students are strongly encouraged to attempt to visualise/sketch the deflected shape of a
loaded structure and predict the type of force in the members prior to carrying out the
analysis; i.e.

(i) in the case of pin-jointed frames identify the location of the tension and
compression members,

(i) in the case of beams/rigid-jointed frames, sketch the shape of the bending moment
diagram and locate points of contraflexure indicating areas of tension and
compression.

A knowledge of the location of tension zones is vital when placing reinforcement in

reinforced concrete design and similarly with compression zones when assessing the
effective buckling lengths of steel members.

xiii
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When developing their understanding and confirming their own answers by studying the
solutions provided, students should also analyse the structures using a computer analysis,
and identify any differences and the reasons for them.

The methods of analysis adopted in this text represent the most commonly used ‘hand’
techniques with the exception of the direct stiffness method in Chapter 7. This matrix
based method is included to develop an understanding of the concepts and procedures
adopted in most computer software analysis programs. A method for inverting matrices is
given in Appendix 3 and used in the solutions for this chapter — it is not necessary for
students to undertake this procedure. It is included to demonstrate the process involved
when solving the simultaneous equations as generated in the direct stiffness method.

Whichever analysis method is adopted during design, it must always be controlled by the
designer, i.e. not a computer! This can only be the case if a designer has a highly
developed knowledge and understanding of the concepts and principles involved in
structural behaviour. The use of worked examples is one of a number of strategies adopted
by students to achieve this.

In this 2™ Edition the opportunity has been taken to modify the x-y-z co-ordinate system/
symbols and Chapter 6 on buckling instability, to reflect the conventions adopted in the
structural Eurocode EN 1993-1-1 for steel structures, i.e.

x-x along the member,

y-y the major principal axis of the cross-section (e.g. parallel to the flange in a steel
beam) and

z-z the minor principal axes of the cross-section (e.g. perpendicular to the flange in a
steel beam).

Local and flexural buckling equations as given in the EN 1993-1-1 are also considered.
Chapter 4 for the analysis of beams has been expanded to include moment redistribution
and moment envelopes. Chapter 5 has been expanded to include the analysis of singly-
redundant, rigid-jointed frames using the unit load method.

In addition, two new chapters have been added: Chapter 9 relating to the construction and

use of influence lines for beams and Chapter 10, the use of approximate methods of
analysis for pin-jointed frames, multi-span beams and rigid-jointed frames.

1 Cross, H. Engineers and Ivory Towers. New York: McGraw Hill, 1952

William M.C. McKenzie
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1. Structural Analysis and Design

1.1  Introduction

The design of structures, of which analysis is an integral part, is frequently undertaken
using computer software. This can only be done safely and effectively if those undertaking
the design fully understand the concepts, principles and assumptions on which the
computer software is based. It is vitally important therefore that design engineers develop
this knowledge and understanding by studying and using hand-methods of analysis based
on the same concepts and principles, e.g. equilibrium, energy theorems, elastic,
elasto-plastic and plastic behaviour and mathematical modelling.

In addition to providing a mechanism for developing knowledge and understanding,
hand-methods also provide a useful tool for readily obtaining approximate solutions during
preliminary design and an independent check on the answers obtained from computer
analyses.

The methods explained and illustrated in this text, whilst not exhaustive, include those
most widely used in typical design offices, e¢.g. method-of-sections/joint resolution/unit
load/McCaulay’s method/moment distribution/plastic analysis etc.

In Chapter 7 a résumé is given of the direct stiffness method; the technique used in
developing most computer software analysis packages. The examples and problems in this
case have been restricted and used to illustrate the processes undertaken when using
matrix analysis; this is not regarded as a hand-method of analysis.

1.2  Equilibrium
All structural analyses are based on satisfying one of the fundamental laws of physics, i.c.

F=ma Equation (1)
where
F is the force system acting on a body
m is the mass of the body
a is the acceleration of the body

Structural analyses carried out on the basis of a force system inducing a dynamic
response, for example structural vibration induced by wind loading, earthquake loading,
moving machinery, vehicular traffic etc., have a non-zero value for ‘@’ the acceleration. In
the case of analyses carried out on the basis of a static response, for example
stresses/deflections induced by the self-weights of materials, imposed loads which do not
induce vibration etc., the acceleration ‘a’ is equal to zero.

Static analysis can be regarded as a special case of the more general dynamic analysis in
which:

F=ma=0 Equation (2)

F' can represent the applied force system in any direction; for convenience this is normally
considered in either two or three mutually perpendicular directions as shown in Figure 1.1.
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The application of Equation (2) to the force system indicated in Figure 1.1 is:
Sum of the forces in the direction of the X-axis 2F,=0 Equation (3)
Sum of the forces in the direction of the Y-axis ZFy=0 Equation (4)
Sum of the forces in the dircction of the Z-axis XF,=0 Equation (5)

Since the structure is neither moving in a linear direction, nor in a rotational direction a
further three equations can be written down to satisfy Equation (2):

Sum of the moments of the forces about the X-axis M. =0 Equation (6)
Sum of the moments of the forces about the Y-axis IM,=0 Equation (7)
Sum of the moments of the forces about the Z-axis M,=0 Equation (8)

Equations (3) to (8) represent the static equilibrium of a body (structure) subject to a three-
dimensional force system. Many analyses are carried out for design purposes assuming
two-dimensional force systems and hence only two linear equations (e.g. equation (3) and
equation (5) representing the x and z axes) and one rotational equation (e.g. equation (7)
representing the y-axis) are required. The x, y and z axes must be mutually perpendicular
and can be in any orientation, however for convenience two of the axes are usually
regarded as horizontal and vertical, (e.g. gravity loads are vertical and wind loads
frequently regarded as horizontal). It is usual practice, when considering equilibrium, to
assume that clockwise rotation is positive and anti-clockwise rotation is negative. The
following conventions have been adopted in this text:

x-direction: horizontal direction - positive is left-to right — +ve
z- direction: vertical direction - positive is upwards T +ve
y- direction: rotation about the y-axis - positive is clockwise N pve
Z
plane (XZ) of the structure = X
Figure 1.2



