
POSITIVE STAINING FOR ELECTRON MICROSCOPY

M.A. HAYAT

Positive Staining for Electron Microscopy

M. A. HAYAT

Professor of Biology Kean College of New Jersey Union. New Jersey Van Nostrand Reinhold Company Regional Offices: New York Cincinnati Chicago Millbrae Dallas

Van Nostrand Reinhold Company International Offices: London Toronto Melbourne

Copyright © 1975 by Litton Educational Publishing, Inc.

Library of Congress Catalog Card Number: 75-2011 ISBN: 0-442-25684-1

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems—without permission of the publisher.

Manufactured in the United States of America

Published by Van Nostrand Reinhold Company 450 West 33rd Street, New York, N.Y. 10001

Published simultaneously in Canada by Van Nostrand Reinhold Ltd.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging in Publication Data

Hayat, M A
Positive staining for electron microscopy.

Includes index.

1. Stains and staining (Microscopy) 2. Electron microscopy—Technique. I. Title. QH237.H38 578'.64 75-2011 ISBN 0-442-25684-1

To My Friends For Their Compassion the only universal virtue

PREFACE

In general, the available information on the chemical reactions between staining reagents and cellular ligands is meager. Moreover, this information has been scattered, mostly in scientific journals. This paucity of information is responsible for the "staining controversies" such as the staining specificity of phosphotungstic acid. In the absence of such information, it is difficult to achieve correct interpretation with regard to the location, structure, chemical composition, size, concentration, and function of various cell components.

Information on the chemistry of staining, however, has been emerging steadily because of the efforts of many scientists from various countries. As a result, we now know, at least in some cases, the precise chemical reactions involved between specific staining reagents and tissue ligands. Positive staining has already provided considerable information on the shape and size of molecules, although little is known concerning the distribution of chemical groups within them. Improvements in specific staining and the use of high resolution electron microscopy are expected to facilitate the resolution of many problems in molecular biology. Even a few years ago it would have been almost impossible to write a comprehensive book on positive staining for electron microscopy, although coordination complexes from a chemical point of view and in model systems have been studied extensively over the past century, and several excellent monographs deal with them. Today, sufficient information on various aspects of staining is available, which warrants the publication of this book.

This book presents what is known definitively, the gaps in our current knowledge, and ideas in progress. In the case of a controversy, an attempt has been made to present both sides. Alternative procedures and potential research areas also are pointed out. It is my hope that with this approach, the reader will better appreciate the advantages as well as the limitations and uncertainties encountered in interpreting the data on staining. I also hope that the information presented here will provide stimulation and groundwork for deeper study and understanding of the chemistry of staining.

The book provides in detail almost all the available methods of staining for electron microscopy. No attempt was made to include procedures which belong exclusively to the area of electron microscopy of enzymes, since a multivolume treatise on this subject is being published by the author. Although the majority of the methods presented have been tested for their reliability, they are subject to modifications depending upon the objective of the study. The instructions for the preparation of staining solutions and buffers are straightforward and complete, and should enable the readers to prepare their own specimens without outside help. It is suggested that the entire procedure be read and necessary solutions prepared prior to undertaking the processing. An exhaustive list of references with complete titles is provided, as are full author and subject indexes.

This book is addressed primarily to those interested in electron microscopy, but information on the chemistry of staining should also be helpful to those involved with the techniques for light microscopy. The book is intended not only for teachers and scientists but also for students, technicians, and research workers not familiar with staining techniques.

I am grateful to Drs. Gunter Bahr, Michael Beer, James Coleman, R. Lillie, and Lee Peachey for their valuable suggestions.

M. A. HAYAT

Contents to Principles and Techniques of Electron Microscopy

Volume 1
FIXATION
EMBEDDING
SECTIONING
STAINING
SUPPORT FILMS

Volume 2

FREEZE-SUBSTITUTION AND FREEZE-DRYING, Lionel I. Rebhun THE FREEZE-ETCHING TECHNIQUE, James K. Koehler NEGATIVE STAINING, Rudy H. Haschemeyer and Robert J. Meyers SHADOW CASTING AND REPLICATION, W. J. Henderson and K. Griffiths HIGH RESOLUTION AND SHADOWING, R. Aberman, M. M. Salpeter and L. Bachmann

AUTORADIOGRAPHY, M. M. Salpeter and L. Bachmann

Volume 3

THE ELECTRON MICROSCOPE, Saul Wischnitzer
ELECTRON MICROSCOPY OF SELECTIVELY STAINED MOLECULES,
T. Koller, M. Beer, M. Müller and K. Mühlethaler
HIGH RESOLUTION DARK-FIELD ELECTRON MICROSCOPY,
Jacques Dubochet

IN-FOCUS PHASE CONTRAST ELECTRON MICROSCOPY, H. M. Johnson ELECTRON MICROSCOPIC EVALUATION OF SUBCELLULAR FRACTIONS OBTAINED BY ULTRACENTRIFUGATION, Russell L. Deter STEREOLOGICAL TECHNIQUES FOR ELECTRON MICROSCOPIC

MORPHOMETRY, Ewald R. Weibel and Robert P. Bolender CRITICAL POINT-DRYING METHOD, M. A. Havat and B. R. Zirkin

Volume 4

OPTICAL SHADOWING, Glen B. Haydon

RELATIVE MASS DETERMINATION IN DARKFIELD ELECTRON

MICROSCOPY G I Brakenhoff

CORRELATIVE LIGHT AND ELECTRON MICROSCOPY OF SINGLE CULTURED CELLS, Zane H. Price

DENATURATION MAPPING OF DNA, Ross B. Inman and Maria Schnöss EXAMINATION OF POLYSOME PROFILES FROM CARDIAC MUSCLES.

Kenneth C. Hearn

PARTICLE COUNTING OF VIRUSES, Mahlon F, Miller II ULTRAMICROINCINERATION OF THIN-SECTIONED TISSUE. Wavne R. Hohman

PREPARATORY METHODS FOR ELECTRON PROBE ANALYSIS. James R. Coleman and A. Raymond Terepka

Volume 5

OUANTITATIVE MAPPING WITH THE ELECTRON MICROSCOPE, Peter Sterling

PHOTOGRAPHIC ASPECTS OF ELECTRON MICROSCOPY, G. C. Farnell and R. B. Flint

ENVIRONMENTAL DEVICES IN ELECTRON MICROSCOPY, David L. Allinson

OPTICAL DIFFRACTOMETRY, Bjørn V. Johansen

THE ANALYTICAL ELECTRON MICROSCOPY, EMMA-4, Barry A. Weavers

Volume 6

HIGH VOLTAGE ELECTRON MICROSCOPY, Colin Humphreys THE PRINCIPLES OF HIGH RESOLUTION ELECTRON MICROSCOPY. J. M. Cowley

CONTRAST AND IMAGE FORMATION OF BIOLOGICAL SPECIMENS, R. E. Burge

THE ANALYSIS OF BIOLOGICAL STRUCTURES WITH X-RAY DIFFRACTION TECHNIOUES, Alexander McPherson, Jr. TILTING EXPERIMENTS IN THE ELECTRON MICROSCOPE,

Rainer H. Lange

ELECTRON AUTORADIOGRAPHY OF FREE SPECIMENS, Nadir M. Maraldi

CRYOULTRAMICROTOMY, René Simard ELECTRON INTERFERENCE MICROSCOPE, T. Hibi and K. Yada

Volumes 7 ---

RADIATION DAMAGE TO BIOLOGICAL SPECIMENS

OPTICAL IMAGE RECONSTRUCTION

QUANTITATIVE THREE-DIMENSIONAL ELECTRON MICROSCOPY

AUTOMATED IMAGE ANALYSIS

FREEZE-DRYING OF VIRUSES AND MACROMOLECULES,

COUNTING OF ELECTRON DENSITIES

MIRROR ELECTRON MICROSCOPY

SCANNING TRANSMISSION ELECTRON MICROSCOPE

AUTORADIOGRAPHY OF FREEZE-DRIED AND DRY-MOUNTED SPECIMENS

SCANNING TRANSMISSION ION MICROSCOPY

COMPUTER TECHNOLOGY FOR RECONSTRUCTION OF SERIAL SECTIONS

MOLECULAR HYBRIDIZATION

INTERFERENCE PHENOMENON ON OSMIUM TETROXIDE-FIXED SPECIMENS

SPECIMEN SUPPORT FILMS FOR HIGH RESOLUTION ELECTRON MICROSCOPY

LOW VOLTAGE ELECTRON MICROSCOPY

THREE-DIMENSIONAL IMAGE RECONSTRUCTION

CALIBRATION OF ELECTRON MICROSCOPE MAGNIFICATION

VISUALIZATION OF RNA IN VIRUSES

ELECTRON MICROSCOPY OF ISOLATED NUCLEAR COMPONENTS

CRYOSECTIONING OF MUSCLE

STUDY OF CHROMOSOMES USING G-BANDING TECHNIQUE

EQUIDENSITOMETRY

LORENTZ ELECTRON MICROSCOPY

EOUIDENSITE ROTATION TECHNIQUE

VISUALIZATION OF CHROMOSOME BANDS

Contents to Electron Microscopy of Enzymes

Volume 1
SPECIMEN PREPARATION, M. A. Hayat
PHOSPHATASES, Edward Essner
GLYCOSIDASES (β-Glucuronidase, β-Glucosidases), I. D. Bowen
GLYCOSIDASES (N-Acetyl-β-Glucosaminidase), D. Pugh
GLUTAMATE OXALACETATE TRANSAMINASE, Sin Hang Lee
MYROSINASE IN CRUCIFEROUS PLANTS, Tor-Henning Iversen
ENZYME IMMUNOCYTOCHEMISTRY, Ludwig A. Sternberger

Volume 2
HEMOPROTEINS, Edward Essner
ACYLTRANSFERASES, Joan A. Higgins
POLYPHENOLOXIDASES (Plants), Yvette Czaninski and Anne-Marie Catesson
TYROSINASE, John J. Eppig, Jr.
SULFATASES, Väinö K. Hopsu-Havu and Heikki Helminen
ADENYLATE CYCLASE, Roger C. Wagner and Mark W. Bitensky
LIPASE, Tetsuji Nagata

Volume 3

ESTERASES-NONSPECIFIC ESTERASES, Theodore K. Shnitka PURINE NUCLEOSIDE PHOSPHORYLASE, Rafael Rubio CELLULASE, Arya K. Bal CARBONIC ANHYDRASE, Marie Mullaney Cassidy and Fred G. Lightfoot CARBONIC ANHYDRASE-ALTERNATIVE METHOD, Seymour Rosin CREATINE PHOSPHOKINASE, E. Christis Farrell and Nobuhisa Baba ACETYL COENZYME A CARBOXYLASE, Joan A. Higgins and R. D. Yates

Volume 4

OXIDOREDUCTASES, Jacob S. Hanker
5-NUCLEOTIDE PHOSPHODIESTERASE, K. C. Tsou
MALATE SYNTHASE, Richard N. Trelease
LOCALIZATION OF ENZYMATIC ACTIVITY IN SUBCELLULAR
FRACTIONS, A. A. El-Aaser and Eric Reid
NAD-PYROPHOSPHORYLASE, E. Ungar and I. B. Buchwalow
APPLICATION OF ELECTRON AUTORADIOGRAPHY TO ENZYME
LOCALIZATION, J. Jacob and G. C. Budd

Volumes 5 ---

GLUTAMIC ACID DECARBOXYLASE
GLYCOGEN PHOSPHORYLASE
3,5-CYCLIC NUCLEOTIDE PHOSPHODIESTERASE
AMINO PEPTIDASES
5' NUCLEOTIDASE
URATE OXIDASE
ACETYLCHOLINESTERASE
PROLYL HYDROXYLASE
PHENYLETHANOLAMINE-N-METHYLTRANSFERASE
LOCALIZATION OF ENZYMES IN BACTERIA
FRUCTOSE 1,6-BIPHOSPHATE ALDOLASE

Contents to Principles and Techniques of Scanning Electron Microscopy

Volume 1

THE SCANNING ELECTRON MICROSCOPE, J. Temple Black CRITICAL POINT DRYING, Arthur L. Cohen CRYOTECHNIOUES, Tokio Nei

FROZEN RESIN CRACKING METHOD AND ITS ROLE IN CYTOLOGY, Kejichi Tanaka

PREPARATION OF STEREO SLIDES FROM ELECTRON MICROGRAPH STEREOPAIRS, Michael Nemanic

LOW-MAGNIFICATION STUDY OF UNCOATED SPECIMENS, H. F. Howden and L. E. C. Ling

SPORES, Ann W. Nickerson, Lee A. Bulla, Jr., and Cletus P. Kurtzman THE AERIAL SURFACES OF HIGHER PLANTS, P. J. Holloway and E. A. Baker

PLANT CELL WALLS AND INTRACELLULAR STRUCTURES, Lewis G. Briarty

INTRACELLULAR STRUCTURES, Barbara J. Panessa and Joseph F. Gennaro, Jr.

WOOD, Karl Borgin

Volume 2

CATHODOLUMINESCENCE OF ORGANIC CHEMICALS, M. De Mets CATHODOLUMINESCENCE OF HERBICIDES, Richard H. Falk SILVER AS A STAIN, H. D. Geissinger SECTIONS INCUBATED IN THE HISTOCHEMICAL MEDIA, Takashi Makita SCANNING AND TRANSMISSION ELECTRON MICROSCOPY OF SINGLE TISSUE SPECIMENS, M. Gary Wickham and David M. Worthen

SOFT TISSUES OF MARINE TELEOSTS, Gary Hobson Dobbs, III. CILIATED EPITHELIA, Ellen Roter Dirksen

EMBRYONIC AND FETAL TISSUES OF VERTEBRATES, Robert E.

Waterman

LUNG, Charles Kuhn, III

BONE AND OTHER HARD TISSUES, Alan Boyde and Sheila J. Jones FOSSIL PALYNOMORPHS, H. A. Leffingwell

Volume 3

ISOLATED GIANT CHROMOSOMES, Ch. Holderegger

MICRODISSECTION, J. B. Pawley, T. L. Haves, and J. A. Nowell

VERY SMALL BIOLOGICAL SPECIMENS. Thomas L. Haves and James B.

Pawley

MICROORGANISMS, Agnes C. Kormendy

CULTURED AND FREE LIVING CELLS, R. M. Albrecht and A. P.

MacKenzie

STEREOGRAPHIC TECHNIOUES, Ian C. Clarke

APPLICATION OF A FIELD EMISSION SOURCE TO SEM, Leonard M.

Welter

Volume 4

PREPARATION AND EXAMINATION OF SPECIMENS AT LOW TEMPERATURES, George R. Koch

THIOCARBOHYDRAZIDE-MEDIATED OSMIUM BINDING: A Technique for Protecting Soft Biological Specimens in the Scanning Electron Microscopy,

Robert O. Kelley, Ronald A. F. Dekker, and John G. Bluemink

REPLICA TECHNIOUES, Cornelis H. Pameijer

SPERMATOZA, Baccio Baccetti

ELECTRON PROBE X-RAY MICROANALYSIS, A. T. Marshall

SCANNING ELECTRON SPECTROMETERIC MICROSCOPY, Raymond K. Hart

Volumes 5-6

SCANNING X-RAY MICROSCOPE

METAL STAINING AND BACKSCATTER ELECTRON IMAGING

VASCULAR CASTS OF BLOOD VESSELS

REPLICAS OF TISSUES

SCANNING TRANSMISSION ELECTRON MICROSCOPY OF FROZEN **SPECIMENS**

REMOVAL OF RESINS FROM SPECIMENS FOR SEM

INJECTION REPLICA TECHNIQUE

HAPTEN-SANDWICH LABELING IN SEM

SCANNING ELECTRON MICROSCOPY OF CONCANAVALIN A BINDING

VIRUSES

CHROMOMERES

HUMAN KIDNEY

BACTERIOPHAGES

ORGANELLES

HUMAN CEREBRAL VENTRICULAR SURFACES

STEREO SEM TECHNIQUES

PREPARATION OF PLAOUE

CARTILAGE

HUMAN PLATELET AGGREGATES

LIVER

WET CHEMICAL METHOD FOR SEM SPECIMENS

SCANNING TRANSMISSION ENERGY ANALYZING MICROSCOPE

PHOTOGRAPHIC RECORDING OF INFORMATION FROM SEM

SCANNING ELECTRON MICROSCOPY IN FORENSIC SCIENCE

CONTENTS

PREFACE	vii
INTRODUCTION	1
IMAGE CONTRAST	8
FACTORS AFFECTING CONTRAST	9
DURATION OF STAINING	11
SIZE OF STAIN AGGREGATES	11
STAIN SPECIFICITY	12
STAINS	14
Lead	17
Mechanism of Staining	19
Reaction with Membranes	21
Reaction with Glycogen	21
Reaction with Other Cell Components	22
Lead Hydroxide	23
Lead Acetate	27
Lead Tartrate	29
Lead Citrate	29
Glycogen Staining	31
Tricomplex Fixation and Staining	31
Uranyl Preparations	33
Mechanism of Staining	35
Reaction with Nucleic Acids	36
Reaction with Proteins	37
Reaction with Lipids	38
Overall Effect on Tissues	39
pH	42
Other Factors Affecting Uranyl Staining	43
Staining Solutions	44
Phosphotungstic Acid	47

x CONTENTS

Mechanism of Staining	4
pH	5.
Fixation and Staining Procedures	5
Staining of Ultrathin Frozen Sections	62
Phosphotungstic Acid-Chromic Acid	63
Phosphotungstic Acid-Hematoxylin	64
Acriflavin-Phosphotungstate	64
Potassium Permanganate	66
Osmium Tetroxide	69
Osmeth	75
Iodide-Osmium Tetroxide Mixtures	75
Zinc Iodide-Osmium Tetroxide	75
Sodium Iodide-Osmium Tetroxide	83
Potassium Pyroantimonate-Osmium Tetroxide	84
Mechanism of Staining	88
Reliability of the Method	89
Fixation and Staining Procedures	93
Silver Lactate-Osmium Tetroxide	99
Osmium Tetroxide-Dimethylethylenediamine	101
Oxalate-Glutaraldehyde	101
Diaminobenzidine-Osmium Tetroxide	106
Ferrocenylmethyl Carboxyhydrazide	108
Preparation of FMC	108
Procedure	110
Thiosemicarbazide and Thiocarbohydrazide	110
Periodic Acid-Thiosemicarbazide or Thiocarbohydrazide-Silver	
Proteinate	111
Periodic Acid-Thiosemicarbazide or Thiocarbohydrazide-Osmium	
Tetroxide	117
Sodium Periodate-Thiosemicarbazide-Osmium Tetroxide	119
Osmium Amine	121
Silver	124
Mechanism of Staining	124
Fixation and Staining Procedures	129
Periodic Acid-Silver Method	141
Periodic Acid-Chromic Acid-Silver Method	143
Golgi Impregnation Method	146
Iron	146
Mechanism of Staining	147
pH	154
Rate of Penetration	156

Mode of Staining	156
Staining Solutions	156
Ruthenium Red	162
Penetration	163
Impurities	164
Applications	164
Effect on the Cell Surface	166
Role in Ion Transport	166
Mechanism of Staining	166
Fixation and Staining Procedures	169
Ruthenium Violet	176
Lanthanum	176
Effects on Calcium Metabolism	182
Mechanism of Staining	182
Fixation and Staining Procedures	183
Alcian Blue	187
Mechanism of Staining	187
Fixation and Staining Procedures	189
Purification Procedure	191
Thorium	191
Fixation and Staining Procedures	193
Concanavalin A	194
Isolation and Purification	197
Application in Microscopy	200
Mechanism of Staining	201
Fixation and Staining Procedures	202
Tris 1-Aziridinyl Phosphine Oxide	211
Tetraphenylporphine Sulfonate	211
Fixation and Staining Procedures	213
Bismuth	215
Fixation and Staining Procedures	216
Indium	219
Fixation and Staining Procedures	220
Vanadium	221
Mercury	221
Fixation and Staining Procedures	225
Golgi Impregnation Method	228
Thallium	229
Fixation and Staining Procedure	232
Zirconium	233
Compounds of Zirconium	233