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Preface

These notes arose from a course of lectures given to final-
year and postgraduate students at the University of Nottingham,
and comprise a substantially revised and extended version of my
earlier contribution to this series. As before, the emphasis is

on concrete examples of groups exhibited in their natural set-

tings and thus to demonstrate at a modest level some of the per-

vasive connections between group theory and other branches of

mathematics. Such is the current rate of progress (both upwards
and outwards) in combinatorial group theory that no attempt at
completeness is feasible, though it is hoped to bring the reader
to within hailing distance of the frontiers of research in one
ot two places.

My thanks are due to a host of colleagues, students and
friends whose names, too numerous to mention here, may be found
scattered through the ensuing pages. It is a pleasure to acknow-
ledge a special debt of gratitude to Professor Sandy Green for
introducing me to research mathematics, to Dr E.F. Robertson for
his encouragement and for help in correcting the proofs, and to
Dr H.R. Morton for much valuable advice on the final chapter.

My thanks also go to Professor I.M. James for keeping a paternal
eye on things, to.Mrs Anne Towndrow for typing half the manu-
script, and to the staff of Cambridge University Press for their '
speed and skill in setting the text (especially the othervhaif).
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1- Free groups and free presentations

The words are all there ready; now we've got

to get them in the right order. (Python)

L ]

‘? A group G -is generated by a subset X if each of its elements

F can be expressed as a product of members of Xil . ~Such a product

* is called a word, and a relation is an equation between two words.
A set R of relations that hold in G " defiges the group if every
relation that holds in C is a consequence of R . When this
happens, we say that G is presented by X and R . This defi-
nition is made rigorous using the concept of a free group (essen-
tially, a group having a set of generators between which there are
no non-trivial relations), which is defined using a universal
property. Having developed some elementary but important proper-
ties of free groups (such as their existence), we proceed to the
fundamental tﬁeorem of §2, where Schreier's proof is given in de-
tail and Nielsen's original method in outline, In §3, the defi-
nition of group presentation is made rigorous, and this is used
to.clarify the proof of the Nielsen-Schreier theorem by means of
an anotated examplé. §4 explains how to pass from a group multi-
plication table to a presentation and from one presentation to
another, as well as describing a presentation for a direct product
of two groups.

L4

* §1. Elementary properties of free groups :

3 The fundamental notion used in defining presentations of groups
is that of a free group. As the definition suggests, the idea of
freeness is applicable in algebraic situations other than group

theory.

Definition 1. A group F is said to be free on a subset X ¢ F

if, for any group G and any mapping & : X > G , there is a



unique homomorphism 6' : F = G such that ;g
x0' = x8 ' (1)
for all x € X . The cardinality of X 1is called the rank of F.

Remark 1. There are various ways of expressing the property (1).
We may say that 8' extends 6 or that 8' agrees with 6 on .

: >
X or, letting 1 : X+ F denote inclusion, that the following 5

L

diagram is commutative:
@

1
X——»F

{7

G

In general, a diagram involving sets and mappings is called com-—
mutative if any two composite mappings, beginning at the same
place and ending at the same place in the diagram, are equal. In

this case, this boils down to the single assertion that 18' =8 .

- Remark 2.  There is an analogy between this situation and a fam-
iliar one encountered in linear algebra; let V be a vector space
over a field k and B a basis for V. Then for any vector space
W over k and any mapping T :B-+W, there is a unique k-linear
transformation t':V-+W extending 1 . This property is known as
“extension by linearity' and can be used to define the notion of
basis.

.
Remark 3. If we write 'abelian group' in place of 'group' in the‘
two places where this word appears in Definition 1, we obtain the _.
definition of a free abelian group. A free abelian group of rank g
w: ~is just the direct sum of w infinite cyclic groups (proved

for finite w 1in Theorem 6.2).¢

Remark 4. By convention, we take E (the trivial group) to be
free of rank O , the subset X being empty. The infinite cyclic

group {x"IneZ} 1is free of rank 1 . We denote it by Z as it



is just the multiplicative version of the additive group of in-

tegers. Take X ='{x} , and given

6 : X+G
Xk y

simply define for all ne Z,

8' 1is obviously a homomorphism extending 6 , while if 6" 1is

another,
X" = (xM)™ = y" = (xe")" = x"0' ,
proving that 6' is unique.

Remark 5. There are one or two things to check before this defi-
nition can have any value. One can show for example that there
does exist a free group of any given rank, and that the ramnk of a
free group is well defined. These together with other elementary
properties of free groups form the content of our first four

theorems.

Theorem 1. (i) If F is freeon X , then X generates F .
(ii) Two free groups of the same rank are isomorphic.

(iii) Free groups of different ranks are not isomorphic.

Proof. (i) Recall that if X is a subset of a group G , the
intersection of all subgroups of G containing X is called the
subgroup generated by X and written <X> . We leave it aé aﬁ
exercise to show that this coincides with the set of all finite
products of members of X and their inverses. Returning to the
case in hand, we let <X> play the role of G 1in Definition 1,
taking 6 to be inclusion. Letting ¢ denote the inclusion of

<X> in F , we have the following picture:



1
X=——2F

7

<X>

Since this diagram commutes, we have 10'¢ = 8¢ = 1 , so that
8'¢ : F+ F extends 1 . But so does 1F , and do by the unique
ness part of Definition 1 (with 1,F in place of 6,6 ), we have

8'¢ = 1. , whence ¢ is onto and <X> = F , as required. e

(1i) Let Fj be free on X. and let 1. : Xj -+ Fj denote in-
clusion, j = 1,2 . Assume’ that lel = IXZI , so that there is a
bijection «x : x1 - x2 . Let a,B be the homomorphisms extending

as in the following diagrams:

Y1
X, =——bF o
X 5
VA
121 11l
F2 ,

-1
Now 1108 - <128 =Kk 1y =1, , so that aoB :_P1 - Fl extends

KlgK "1y

1 But 1p also extends 1, » so uniqueness implies a8==1F1.

1"
: 1 . . . :
Similarly, Ba = 1F2 , and o is the required isomorphism.

(iii) Let F be free on a subset X with |[X| = , and let
G be any group. Then it is the burden of Definition 1 that fhe
mappings: X - G are in one-to-one correspondence with the homo- @
norphismsﬁ F > G . Thus, there are exactly 29 homomorphisms
from F to 22 . Since this number is invariant under isomor-
phism, we see that ¢ , and hence the rank w , is determined by

the isomorphism class of F .

Theorem 2. There exists a free group of any given rank.



Proof. We construct the .'group of words' F=F(X) on a given
set X, and prove that it is free of rank |X| . The free group F
on a given set X 1is constructed as follows. Let X = {xlxeX}
be any set in one-to-one correspondence with, and disjoint from,

X and put T =X u X . If T denotes the nth Cartesian power
of T (n=0,1,2,...), put W= U ™ , the set of words in X .
A word w ; ™ 1is said to have lgigth n , and the single element
of TO is called the empty word and denoted by e . A . .word

~

w = (tl,...,tn) in W is called reduced if there is no 1 be-

tween 1 and n-1 such that Ei = t.,, » interpreting s=8.
Letting F be the set of reduced words, it is clear that e ¢ F

and X c F . The product of two reduced words of positive length
a = (xl,...,xm),.b = (yl,...,yn)
is defined to be

(COPEERFE SUNPIS EETTER A0 B

where k is the largest integer such that none of the words
(xm,yl),---,(xm_r*l,yr)

are reduced, while we = ew = w for any word w . It is clear
that this defines a binary operation on F for which e is an
identity and (xl,..'.,xm)-1 = (im,...,il) The tricky bit, sur-
prisingly enough, is the proof of the associative law. Now take

three words in F :

a= (xl,...,xl), b = (yl,...,ym), c = (zl,...,zn) .

If any of %,m,n are zero, we clearly have (ab)c = a(bc) , so
assume they are all positive. Supposing that the lengths of ab
and bc are f2+4m-2r and m#n-2s respectively, we distinguish

three cases. First, if r+s <m , both (ab)c and a(bc) are



equal to the reduced word

(Xls---.Xl_r’yrﬂ,---,ym_s.zs+1;---.Zn) H

secondly, if t+s =m , both are equal to ae , where

a = (xl,....x ), e = (zs*l,...,zn) 5

L-r ..

Finally, in the case r+s > m , we define

1 @
= (z --,zs) ’

g-F (xl-r+l;""xl-m+s) - (ym-s+1""’yr) m-r+l’”

-1

% (xl—m+s+1""’x£) i~ (_YI,---,ym_s) »

-1
§ (zl,...,zm_r) = (yr+1,...,ym) a

Thus, a =By , b = 7-18-16-1 , ¢ = 6Be , since the brackets can
safely be ignored by the first case handled above. Now by the

rule for forming products,
(ab)c = (a6 1) (88¢) = a(Be) , and
a(be) = (aBy) (v ') = (aBe

and again by the first case, these both coincide with the reduced

word (xl,...,x ..,zn)

t-m+s® Zs+1’
We now simplify the notation by dropping the commas and brackets

and writing x-1 for x (x € X u i) , so that if 1 1is the in-

clusion of X in F , all we have to do is check Definition 1 ver-

. batim. If G 1is a group and 6 : X + € a mapping, define e

1

e6' = e, x 6' = (1;:6)--1 .

B = ' '
(xl...xn)e xle ...xne N

for any x e X and any reduced word XpooeX o It is a routine



matter to check that 6' is a homomorphism extending 6 . If 6"
is another, it must agree with 6' on X  and since X plainly

generates F , we must have 6' = 8" .

Theorem 3. Let F be a group and X a subset of F ; then F
is free on X if and only if the following two conditions hold:

(i) X generates F ,

(ii) there is no non-trivial relation between the elements
of X , that is, if for ne N, x = X +..X  where for all
either x; € X or le € X, and for all i with 1<i<n-1,
xixi+1 *z e, then x % e ,
Proof. First suppose that F is free on X , so that X gen-
erates F by Theorem 1(i). Now let X' = {x'|xe X} be an ab-
stract copy of X and consider the group of words F(X') as
constructed in the proof of Theorem 2. "By Definition 1, the
priming map : X » F(X') extends to a homomorphism : F - F(X')
under which any reduced word x ¢ F 1is mapped to a reduced word
in F(X') of the same length. Thus no reduced word in F of
length n <1 can be e , since this certainly holds in F(X') .

For the converse, note that conditions (i) and (ii) imply that
every member of F 1is uniquely expressible as a reduced word in
X u X-l . The freeness of F on X 1is now verified in just the
same way as that of F(X) on X in the final part of the proof of

Theorem 2.

Theorem 4. 1f X is a set of generators for a group G and
F(X) is the group’ f words in X , then there is an epimorphism
8: F(X) + G fixing X elementwise. Every group is a homomorphic

image of some free group.

Proof. The required epimorphism #s just the (unique) extension
to the free group F(X) of the inclusion : X = G ; it is onto

because X c Im 6 < G ands <X> = G . The second assertion now
‘ follows from the simple observation that any group G has a set

of generators, for example, G = <G> .



EXERCISE 1. - Let X be a subset of a group G . Prove that '<Xs
is equal to the set of all finite products of members of X and
their inverses. Deduce that if two homomorphisms from G to a

group H agree on a set X of generators of G (i.e. <X> =),

then they are equal.

EXERCISE 2. Given groups G and H , a subset X of G and &
homomorphism 6: G +~ H , prove that <X6> = <X>6 . Defining "

d(G) = min{|X| | X € G, <X> = G} ,
prove that for any homomorphic image H of G , d(H) < d(G)

EXERCISE 3. Given a subset X of a group G , define the normal
closure X of X to be the intersection of all normal subgroups
of G containing. X . Prove that X is just the set of all fi-
nite products of conjugates of members of X and their inverses.
If H is a group and 6: G+ H an epimorphism, show that

X6 = X8

EXERCISE 4. Let F be a free group of rank w and G a group

isomorphic to F . Prove that G is free of rank w .

EXERCISE 5. A group G has a normal subgroup N such that G/N
is free. Prove that G has a subgroup F such that FN = G and
ﬁBN =E . (Such an F 1is called a complement for N in G .)

EXERCISE 6. Call a group P projective if given any epimorphism '

v: B » C of groups and any homomorphism ¢: P =+ C , there is a

_homomorphism u: P > B such that ¢ = pv : e
P
H
@P
B C




Prove that P 1is projective if and only if P 1is free.

EXERCISE 7. call a group I injective if given any monomorphism
1: A > B of groups and any homomorphism ¢: A » I , there is a

homomorphism y: B - I such that ¢ = 1y :

1
B

¢I ‘©/u/

I
Prove that I 1is injective if and only if I 1is trivial. (Hint
(D.B.A. Epstein): Assume that the free group A = F(x,y) 1is a
¥ . -1 -
subgroup of a group B = <x,y,z> in which z "xz =y, z 'yz = x,

z-=e .)

§2. The fNielsen-Schreier theorem

The first ;tep in proving the Basis Theorem for finitely-
generated abelian groups (see §6 below) is to show, at least in
the case of finite rank, that subgroups of free abelian groups are
free abelian,'and that the rank of the subgroup does not exceed
the rank of the group. This is a classical result of Dedekind,
and our purpose here is to provie its non-abelian analogue, taking
care to point out that the assertion about ranks does not hold in
the non-abelian case. We shall consider the free group F = I(X)
on an arbitrary set X , invoking the Axiom of Choice to assert
that X can be well-ordered. The intuitionistic reader is free
to assume that X 1is finite, since this is the only case of
practical interest to us.

The proof we give is essentially due to Schreier, and is
divided into a number of steps, the most important for the sequell

(§12) being embodied in Lemma 3.

1. The ordering of F . Given that X 1is well-ordered, so
1 +1
= X

is X and so also is T =X u X ; for example, if

x,y € X , define x < y-1 , and



X <y <=D> x(y.
Now the elements of F are words of the form

W= XeweX X, € T e o & e
1 n’ i R € | ¥

we call n the length of the word w , n = 2(w) , and take
2(e) =0 . For v,we F, we define v <w if g(v) < 2(w) ,

and order words of equal length lexicographically, that is, if
v = xl...xn 2w = Yieee¥g o xi,yi ¢ T,

and m is least such that X, * Vg s Ve define
vV < w <=> xm<ym .

The result is easily seen to be a well-ordering of F . For

example, if X = {x,y} , then with respect to the ordering

X <yc< x ' < y"1 of T , the first few elements of F are
e < X < y < x-l < y- < xz < xy < xy-l < yx < yz < yx-l < x-ly
-2 -1 -1 1 -1 -1 -2 3 2 2 -1

<X <X 'y < y- X<y X <y <X <Xy<Xxy < XyX .
Note that in any subgroup H of F , the least element is always
e (since thislis least in F ) and if, for example, H = <xyx> ,
the least element of the coset ny2 is x-ly . That F is
well-ordered is particularly easy to see in the case of finite
rank, for then there are only finitely many words of any given

length.

Lemma 1. Let

v
—
-

w = xl...xn, xi e T, n
be a reduced word in F ; then, for v € F ,

V € X oueX = vX_<WwW .
1 n-1 n

10



Proof. 1If 2(v) < n-1 , then k(vxn) <g(v) +1 <n=2(w) , and

the result holds. Otherwise

v = yl"'yn-l’ yi e T ,

and there is a least m such that y # x and then y < x .
: m m m m

1f Vo-1%n = © s, (v) = n-2 <n=g(w) and we are done. If not

VR = YeeeYo 1% 0

and, since 2(vxn) = o(w) , Yy = Xpseees¥pg =Axm_1 and

Y < X > We have VX < W, as required.

2. The Schreier transversal. We fix a subgroup H of F
once and for all. Recall that a right coset of H in F 1is a

subset of F of the form
Hx = {hx|h ¢ H}

for x € F . The key property of cosets is that
Hx = Hy or Hx n Hy = Q, x,y ¢ F .

The cosets of H thus yield a partition of F , and we can find
a subset U of F such that, for any x ¢ F , there is exactly

one element u ¢ U for which x ¢ Hu , that is,

F= 0 Hu
uel
Such a subset U 1is called a (right) transversal for H in F .
The Schreier transvérsal (with respect to the given ordering of
T ) is obtained if the representative in U of each coset is
taken to be the least elément of that coset. Alternatively, we

list the cosets Hx as x runs over F in ascending order, thus:

l,Hx

He,Hx genee

11



