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FOREWORD

THis book is based on lectures given to experimental physicists at the Joint Institute for
Nuclear Research and students at the Dubna branch of Moscow State University. The
lecture style in so far as possible has been preserved and it is for this reason that there are
repetitions in the text.

The book presents Feynman diagram techniques and methods for calculating quantities
measured experimentally (cross sections, polarizations). It is primarily intended for ¢xperi-
mental physicists. The author hopes that the book will also be useful to advanced students
specializing in elementary particle physics.

The graphical method of representing a perturbation theory series (the Feynman diagram)
which appeared at the beginning of the 1950s has turned out to be extremely fruitful and is
firmly established in all areas of physics. The significance of this method goes far beyond
the boundaries of perturbation theory.

At the present time Feynman.diagrams have become a widespread language which not
only theoretical but also experimental physicists should know. Feynman diagrams are very
intuitive; the rules for constructing them are simple. However, for a conscientious use of
the Feynman diagram method we must proceed by introducing quantized fields, the S-
matrix, and chronological and normal products.

The author’s goal was to present all these topics as economically as possible. Proofs
therefore have been simplified and only the minimum amount of rigor necessary for com-
prehension has been maintained.

There are examples of the most varied processes in which particles as well as antiparticles,
identical particles, and so forth take part. The author tried to present methods for caleulating
the matrix elements of these processes (by perturbation theory) and the basic rules for
constructing Feynman diagrams.

Finally, the author tried to present in detail the methods for calculating quantities
measured experimentally. The techniques for calculating cross sections and polarizations is
illustrated for a whole series of processes, each of which is examined thoroughly. The details
of the calculations can easily be retraced by the reader.

The examples discussed here relate to elementary particle physics and include a wide range
of processes with weak, electromagnetic, and strong interactions.

The processes in which both leptons and hadrons take part (v,+n — u~ +p,e+p —~ e+p,
and others) are examined in most detail. The electromagnetic and weak form factors of
nucleons are discussed in great detail. The author, however, does not pretend to have
provided any kind of orderly presentation of the present theory of weak and electromagnetic
interactions.



FOREWORD

A whole series of important problems in elementary particle physics are not examined in
this book. We do not discuss here the analytic characteristics of the matrix elements (dis-
persion relations), higher orders of perturbation theory and renormalization theory, and
much else. The presentation of these problems can be found in books on quantum field
theory and elementary particle physics. These books contain further references to the
original literature.

In conclusion I consider it my pleasant duty to thank Ya. A. Smorodinsky for useful
discussions of the questions examined in the book, as well as D. Fakirov, N. M. Shumeyko,
and especially L. L. Nemenov, who read the manuscript and made a number of significant
comments.
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INTRODUCTION

BEFORE proceeding to the presentation of field theory we shall introduce the system of units
generally accepted in relativistic quantum theory, in which Planck’s constant # and the speed
. of light ¢ are equal to one. Let us examine the relationship between this system and the cgs
system. In the cgs system # and c are equal respectively to

B Yy

Xcm cm
h= B o,

where (%) ~ 1.05X 10727 and (¢) = 3X 101°—the values for Planck’s constant and the speed
of light in the cgs system. Let us choose units of time and mass such that in the new system
of units the numerical values of Planck’s constant % and the speed of light ¢ are equal to one.
If we choose as units of time and mass

=22 =10
T ™Mb
. then obviously in these units
- moX cm?
h=1 % =1Z to
° It is easy to obtain the relationships between the values of physical quantities in the cgs

system and the new system of units. Denote the mass by m, the energy by E, and the mo-
mentum by p. Thus

m = (m) g = (m) ;- mo = (m) m,

2 1 2
- G - O g —® T
p=ig) g><cm = )l mo><cm = (Y moXcm.

Here (m), (E), and (p) are the values for m, E, and p in the cgs system and (m)’, (E)’, and (p)
are the values for the corresponding quantities in the system # = ¢ = 1. Thus we find

©

r_ o 1 —
(m)' = (m) == @’ CE) = (E)m, (p) (p)(h)



INTRODUCTION

In an analogous manner it is not difficult to obtain the relationships between the values of
any physical quantities in the cgs system and in the system in which# = ¢ = 1.

Not all relationships between physical quantities in the new units contain the dimensional
constants # and ¢ (for example, the relativistic relationship between energy and momentum
in these units takes the form E? = m?+ p?). This is equivalent to the fact that in the system
where # = ¢ = 1, TL™! = 1 and ML*T = 1 and consequently the units of measurement of
all quantities are expressed in terms of L. Obviously the mass has the dimension M = L™2T
= L™, the energy has the dimension L™, the angular momentum is a dimensionless
quantity, the momentum has dimension MLT~* = L1, and so forth.

Note that four-vectors will always be written in the form 4 = (4, i4,). The square of this
four-vector (a scalar) is 4% = A%+ A} = A2— A4}



CHAPTER 1

THE S-MATRIX

1. The Interaction Representation. The S-matrix

Quantum field theory describes those particle interactions in which the number of
particles may not be conserved. We begin by introducing the S-matrix, the matrix whose
elements give the probability amplitudes for the corresponding transitions.

The basic postulate of quantum field theory is that the equation of motion is the Schrédin-
ger equation:

i

a¥(t)
t

= = HPQ. (1.1)

Here %(¢) is the wave function describing the system at time ¢ and H is the full Hamiltonian
of the system. If the system is closed, the Hamiltonian does not depend on time. It is
further postulated that operators correspond to physical quantities in quantum field theory
as in ordinary quantum mechanics and the mean values of the operators

(0) = (¥*0¥) (1.2)

are the observed quantities. In (1.2) O is the operator corresponding to some physicai
quantity and ¥ is the wave function describing the state.
Let ¥ be an arbitrary unitary operator:

VY = 1. (1.3)

Then it is obvious that
(0) = (F"+o'P), (1.4)
where'
Py, Wt =Wt O = VOV*. (1.5)

t We use matrix notation for the operators and functions. In components, equation (1.1) is written in the
following manner:
; 8%

ot
The mean value of the operator O by definition is equal to (O) = Z ¥3%0,,,Y,. As a matrix, this ex-
o',

=Y Hoe Pit),

pl’CSSiOD can be written in the form (l 2). Obviously
W;‘ = | wE V+)a' = ('{IT W)g-
Z ax' L af z : a ( «
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Relationships (1.4) and (1.5) imply that the mean value of the operator does not change if
we use the wave function ¥’ = V¥ for describing the system instead of the wave function
¥, while instead of the operator O, the operator O’ = VOV'* corresponds to the physical
quantity. In other words, the mean values of the operators (quantities measured experimen-
tally) are invariant under the unitary transformation (1.5).

The unitary operator ¥ can be chosen such that the new wave functions change with time
only when there is an interaction. Actually, ¥ is an arbitrary unitary operator. It can also
dcpend on time. Let us denote such an operator by ¥ () and the new functions and operators
by

D@1 = V(@) P(), O) = V(@oV*(@). (1.6)
We write the full Hamiltonian H in the form
H = Ho+Hj, ()

where H, is the free Hamiltonian and H, is the interaction Hamiltonian. Substituting
Y(t) = V*(¢)D(?) in the equation of motion (1.1) we obtain

a0 a«p(r)
ot

D()+iV*r(t)—,— = (Ho+Hp) V(1) D(2). (1.8)

Now let us choose the unitary operator V(¢) such that

;)
o

= HoV*(2). (1.9)

Multiplying (1.8) by ¥(¢) and using (1.9) we obtain the equation
a‘Ij(t)

= H/)D(), (1.10)

where
H;®) = V(@) H V). (1.11)

The transition from the description of the system with wave functions ¥() which satisfy
Schrodinger’s equation (1.1) to the description with functions @(f) = V(¢) ¥(¢), where V()
is a unitary operator satisfying equation (1.9), is called the transition from the Schrédinger
representation to the Dirac representation (interaction representation). The wave function
of the system in the interaction representation, as can be seen from equation (1.10), depends
on time only when there is an interaction. The interaction representation is widely used in
quantum field theory and henceforth we, as a rule, shall work in this representation. Note
that the general solution of equation (1.9) is

V*(f) = e~ Ht—mp+(¢y), (1.12)

where V*(t;) V(t1) = 1. If we assume that the representations coincide at time ¢;, then
V(t1) = 1 and

V(t) = e~ iHolt—m), (1.13)
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As can be seen from (1.6), the operators in the interaction representation depend on time
in general. Differentiating O(t) with respect to ¢ and using the equation

ov(t)
1

T V(t) Ho, (1.14)

—1i

obtained from (1.9) by Hermitian conjugation, we find

i Bgft) =—V()HOV*(t)+ V(1) OHoV* (1) = [0(t), Ho(D)]. (1.15)

We assumed for this that the operator O in the original Schrodinger representation does not
depend on time. Relationship (1.15) defines the time-dependence of the operators in the
interaction representation. From (1.15) it is obvious that the free Hamiltonian in this
representation does not depend on time, i.e. Ho(t) = Ho.

Now let us determine the general solution of the equation of motion (1.10). For this we
examine the equivalent integral equation

B(t) = Dlt0) + (1) | diaH (1) D), (1.16)

where @(to) is the wave function of the system at initial time #o. The initial wave function
must be given. Our task consists in finding the wave function of the system at any subsequent
time ¢. Substituting for @(¢;) under the integral sign on the right-hand side of (1.16) the sum

Bto) +(—i) [ dtaHi(t2) B,

we obtain

90) = P10+ ()  disH () Bto) + (11 | fdtsH (1) | [ draH (1) B2, (1.17)
Continnping this procedure we find
o) = [1+(—i) 'f Hi )+ (-1 fdt () | [ dtaHi(t)+ ..
iy f dosHi(t) ’ [ dtat 1. .. 'tf "t Hit)+ .. ] D). (1.18)

Thus, the general solution of the equation of motion (1.10) is obtained in the form of a
series in powers of the interaction Hamiltonian. We are not going to discuss the question
of the convergence of this series or the possibility of summing it. We shall only note that in
the case when the interaction is characterized by a small constant, the first few members of
the series (1.18) already can give the solution with sufficient accuracy. This occurs in the
case of the electromagnetic interaction as a result of the smallness of the fine structure
constant « = €%/4m =~ 1/137.

Let us write the solution (1.18) in the form

D(t) = U(t, to)D(tn), (1.19)
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where the operator U(t, o) is equal to

-~

1

Ut = 5 (=i [t [ deHito)... | dtaHilt). (1.20)

n=0
Thus, the solution of the equation of motion at time ¢ can be obtained by operating with
U(t, to), which is defined by the interaction Hamiltonian, on the wave function given at
initial time #o.
It is not difficult to see that U(t, o) is a unitary operator. Actually, it follows from (1.10)
and (1.19) that the operator U(t, t,) satisfies the equation
ouU(t, to)

i S = Hil1) UG, 1o). (1.21)

Hence, with the help of the Hermitian conjugate we have (H, is a Hermitian operator)
+
—iw — U*(t, to)H(D). (1.22)

Let us multiply the left-hand side of (1.21) by U™ (¢, o) and the right-hand side of (1.22) by
U(t, to) and subtract the second relationship from the first. We obtain

%(U*(r, to) U(t, to)) = G. (1.23)

Thus, the operator U*(t, to) U(t, to) does not depend on z. Obviously

U(fo, to) = [ (124)
From (1.23) and (1.24) we conclude that
U*(t, to) U(t, to) = 1. (1.25)

Let us write the members of the series (1.20) in a more convenient form. We shall first
examine the third member of the series. The expression H,(#;) H/(t») is integrated over the
shaded area in Fig. 1. The integration is first carried out over ¢, from #, to t;, and then
over ¢, from ¢, to ¢. Let us integrate H,(¢,) H,(ts) over the same area, but first over #; (from
ts to ¢) and then over ¢ (from ¢ to #). Assuming that the value of the integral does not
depend on the order of integration, we find

J!dtl jldtzH[(t],)H[(tz) = J:dtz fth[(tl)H](tz) - jdh jdtzH)(tz)H](ll). (1.26)
to to to [ o iy

The last equation is obtained by a change of the integration variables (f; = 73). Thus, we
have

fdty [ diaHie) Hiltn) = 3 fdtl[ [ dta Hi(e:) Hilta) + jdtgH,(tz)Hl(tl)]. (1.27)

This expression can be written more compactly. For this we introduce the Dyson chronolog-

6
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ical operator P:
Hl(tl)Hl(t2)s t > tﬂ,

(1.28)
H[(lg)Hl(h), to > ;. i

P(H(t:) Hi(t2)) = {

The operator P acting on a product of time-dependent operators arranges them so that the
time argument decreases from left to right. From (1.27) and (1.28) we obtain

13 2, t t
[ty [ dts Ht) Hilts) = & [ty [ dta P(H 1) Hilts)). (1.29)
fo o L fo

1

t 1 =t,

*0

t2
FiG. 1

We shall prove that in the general case
ta=

1 31 1
J.dtl f dts. .. J‘ dtn H(t1) Hi(t2). . . H/(t,)
to to

o

- n_l' f dty f dts f dt, P(Hi(t:) Hi(ts). . . Hi(ty)), (1.30)

where the Dyson chronological operator P in the case of n factors is defined such that
P(H](I],) Hi(ts). . .H[(I,,)) = Hft)) H((t2).. .Hi(t,) where t1>ts> ... >1t, (1.31

The proof is by induction. Let relationship (1.30) be true for n factors. Let us examine the
expression

o

I(t) = fdt' f dt; J~ dts. .. f dt,,H[(tl) H](tlj H](!z). LHi(t,)

to

- (,,4}1)! jd" j‘dtl fd’2- . fdt,.P(H,(t’)H,(tl) Hi(t2). . .Hi(t,)). (1.32)

7
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Differentiating I(¢) with respect to ¢ we find

In—1

@ = H (1) I:_[dtl J dts. . J dtn Hitr) Hit2). . . Hi(tn)

_ I dt, f dt. . I dt,,P(H,(tl)Hl(tz)...Hl(t,,))]. (1.33)

To obtain (1.33) the relationship
P(H(t:) Hi(ts). . . Hi(t)) Hi(t) Hi(tiyy). . .Hi(tn)) = Hf(t) P(Hi(t:) Hi(tz). . .Hi(t,)) (1.34)

was used, which is obviously correct for arbitrary n (f1 <1, ta <1, ...). If relationship
(1.30) is true, then the right-hand side of (1.33) is equal to zero, i.e. I does not depend on
time. Since I(to) = 0, this implies that I(f) = O for any ¢. Thus, from the validity of relation-
ship (1.30) for n factors follows the validity for n+ 1 factors. Since we showed that relation-
ship (1.30) is true for n = 2, it is thereby proved in general. Consequently, the operator
U(t, to) can be written in the form

U(t, to) = z (;;')n

f dt, '[dtz. . Jdt,, P(H/(t1). . . Hi(ty)). (1.35)

Now we shall formulate the basic problem—the problem of the collision of particles. Let
us assume that the initial state is given for # - — o; we are interested in the state of the
system for ¢ — <, From (1.19) we obtain

Do) = U(oo, — o) D(— o). (1.36)
Let us denote
U(eo, — =) =8S. (1.37

This operator is called the S-matrix.
Thus, the operator S acting on the initial wave function of the system given as t — — o
gives the function of the system as ¢ —~ oo. We have

f dt; J dts. .. f dt, P(H(t1) H(t2). . .H(t5)). (1.38)

s= 550

From (1.25) and (1.37) it follows that the S-matrix is unitary, i.e.
St§ = 1. (1.39)

Let @, be some complete orthonormalized set of functions. Expanding @() in functions
@,, we obtain

(=) = TONPHSO(— =)). | (1.40)
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Let us assume that at initial time the system is in the state @, i.e. @(— =) = D,. Then
D,(=) = Z¢m(¢;s¢n) (1.41)

The matrix element (9,,SP,) = S,,. , is therefore the probability amplitude of the transi-
tion from state @, into state @,,. The complete set of functions @,, chosen in problems
concerning the collision of particles is a set of functions which describe free particles with
definite momenta. At the same time, in the general case particles can be different in the
initial and final states. Besides that, in the process of colliding new particles may be produced.
This type of process is described by quantum field theory. Below we shall give a brief
account of the mathematical apparatus of quantum field theory and: (1) construct functions
which describe free particles with definite momenta; (2) learn how to calculate (by per-
turbation theory) the matrix elements for the transition between such states; (3) examine
in detail the techniques for calculating transition probabilities.

IFD 2 9



CHAPTER 2

CLASSICAL FIELDS

2. Equations of Motion

A classical system of N bodies is described by 3N functions of time g, () ( = 1, ..., N),
which satisfy Newton’s equations:

5 ov
mi =~ @1

Here m;, is the mass of the ith particle and V is the potential energy.

As is known, the equations of motion (2.1) can be obtained from a variational principle.
Let us recall its formulation. For the sake of simplicity we shall limit ourselves to the case of
one-dimensional motion. Define the action

$= j' L(g. §) dt, (2.2)

where the Lagrange function L(g, ¢) is equal to

52
L(g. 4) = -~ V(a). 23)

‘

Obviously the value of the action & is determined by the function g(f) over the interval from
to to ¢ (& is a functional of g(r)). Besides g(¢) let us examine the function

q'(t) = q()+8q(2), (2.4)
where 6g(?) is infinitesimal. Suppose
dq(to) = dq(t1) = 0. 2.5y

The increase of the action going from g(f) to ¢’(¢) (the variation of the action) accurate to
first order is equal to
" 1
58 = J [L(q". §)—L(g, §)] dt = J (aT; - 5(7) bq dt. (2.6)

1o fo

10
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In obtaining (2.6) we used the fact that

., .. d
6q_q—q__d_t‘6q’

then integrated by parts and took (2.5) into account. We require that the variation of the
action (2.6) vanish. Since 8g(¢) is arbitrary, from (2.6) we find

OL d oL _ 0. @7

Differentiating the Lagrangian function (2.3) with respect to ¢ and ¢, we obtain from (2.7)

"/
aq’

i.e. (2.7) is the equation of motion. Thus, the function g(f), which is the solution of the
equation of motion, provides an extremum of the action [under the condition (2.5)]. Note
that with the help of the Lagrange function the energy and momentum of the particle can
also be obtained:

mg =

m@ oL e

(2.8)

We now turn to an examination of classical fields. A well-known example is the electro-
magnetic field which is described by the potential 4,(x, f) (4 is the vector potential,
Ao =—iA,is the scalar potential). This means that the electromagnetic field is described by
an infinite number of functions of time (the values of the potential at all points of space),
i.e. the electromagnetic field is a system with an infinite number of degrees of freedom. The
equations of the field (Maxwell’s equations) can be obtained from the variational principle
which is a general principle applicable to any physical system.

We shall examine fields in addition to the electromagnetic field. Denote the functions
describing some field by y,(x), where the index « assumes integer values and x = (x, ixo),
Xxo = t. We write the Lagrangian of the field in the form

L » I L2 (.p, %) dx. 2.9

Here .2(y, 8y/0x) is the Lagrangian of a unit volume (the Lagrangian density).! We assumed
that this quantity depends only on the functions y,(x) and their first derivatives dy,/0x,
[compare (2.3)]. Define the action

8= 5[,2 (w, %) dx, (2.10)

where dx = dx dx, and (2 is some volume of space-time. The variation of the action is

t Henceforth we shall call this quantity the Lagrangian.

2* 11



