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Introduction

In verbal communication, the presence of background noise, such as
the sound of a passing car or an air vent, can impact the quality of the
speech signal in a detrimental way, something that affects the listener and
thus also the communication in several negative ways. Not only may the
perceived quality of the speech be harmed, but also its intelligibility may
be degraded. Even if only the perceived quality of the speech is affected,
this may have a severe impact on the ability of the users to communicate, as
exposure to noisy signals may cause listener fatigue. The presence of noise
in signals is, though, not only a problem for humans. In speech processing
systems, background noise causes additional problems, as such systems
often comprise components that are designed under the assumption that
only one, clean speech signal is present at any given time. This is, for
example, the case for automatic speech recognizers and speech coders.
This is typically done to simplify the design of these components, as the
underlying statistical models then do not have to account for all possible
noise types. Not only does this simplify the training of such models, it
also, generally speaking, leads to faster algorithms; but it also renders
these components vulnerable to noise.

As we have argued, the presence of background noise is problem-
atic for humans and computers alike, and the problem of dealing with
it, which is called speech enhancement or noise reduction, is an impor-
tant and long-standing problem in signal processing (see, e.g.. [1] and [2]
for recent surveys), and the search for new and better methods contin-
ues today. Speech enhancement algorithms are important components in
many systems, where speech plays a part, including telephony, hearing
aids, voice over IP, and automatic speech recognizers. Speech enhance-
ment is generally concerned with the problem of enhancing the quality of
speech signals. This can, of course, mean many things, but it is often asso-
ciated with the specific problem of reducing the impact of additive noise,
which is also what we are concerned with in the present book. Additive
noise occurs naturally in acoustic environments when multiple sources are
present. and examples of common noise types are street, car, and babble.
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2 Speech Enhancement

Moreover, it can also be caused by intrinsic noise in the sensor system, i.e.,
from the electrical components. To be more precise, the purpose of speech
enhancement is to minimize the impact of the background noise while
preserving the speech signal. Hence, there are two performance measures
by which the efficiency of speech enhancement methods i1s compared:
speech distortion and noise reduction [3]. These two measures are often
conflicting, meaning that if we want to achieve the highest possible noise
reduction, then we must accept speech distortion and, similarly, that if
we cannot accept any speech distortion, then our ability to perform noise
reduction will be hampered. An extreme example of this is the maximum
signal-to-noise ratio filter [1] which achieves the highest possible noise
reduction but at the cost of severe speech distortion.

The history of noise reduction can be traced back to the work of
Wiener [4], 1.e., to the very early days of signal processing. Due to the
importance of the problem in particular in speech applications, many
different solutions have been proposed over the years, and much time
and effort is still devoted to the problem today. The problem is often
broken into two sub-problems, namely the problem of finding a function
to be applied to the observed signal so as to extract the desired signal,
i.e., the speech signal, and the problem of finding the information that
this function depends on. If we restrict ourselves to linear filters, then
the first sub-problem is the problem of finding the optimal filter, i.e., a
filter design problem. If the criterion for optimality is the mean-square
error, then the so-called Wiener filter is the solution. This filter requires
knowledge of the noise statistics (or the speech statistics), and the second
sub-problem is then that of finding those statistics, often in the form of the
noise correlation matrix or its power spectral density. In the past decade,
most work seems to have focused on the second sub-problem, e.g.. [5-9],
under difficult conditions when the noise is nonstationary. This book is,
however, concerned with the first sub-problem, which is determining the
function that should be applied to the observed signal. This problem has,
though, also seen some important new contributions regarding optimal
filtering in the past few years, including [3,10,11].

In the literature, one can find many (seemingly) different attempts at
solving the problem of speech enhancement, and at the time a new method
is published, it is often not clear how exactly it relates to other, existing
methods, often because it is either not clear exactly what problems are
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being solved, or that the problems are stated in different ways whose
relation is difficult to ascertain. In fact, it appears that the retrospective
process of relating methods may take decades, if it ever occurs. When
listing existing classes of methods for speech enhancement, spectral sub-
traction, (optimal) linear filtering, statistical model-based approaches,
and subspace methods are typically mentioned. Indeed, these are also
the names of the chapters in the book [2]. The focus in the present book
is on the class of methods generally known as optimal filtering, of which
the classical Wiener filter is a special case. However, in this book, we will
show how speech enhancement using the principles of subspace-based
methods can be cast as an optimal filtering problem. As such, the present
book unifies what has previously been considered two competing prin-
ciples of speech enhancement in one framework. As a consequence, it
is both possible to combine the benefits of the subspace methods and
optimal filtering methods and to analyze and compare the performance
of the various approaches analytically.

1.1 HISTORY AND APPLICATIONS OF SUBSPACE METHODS

The development of the subspace-based methods for speech enhancement
took a quite different route than the more traditional speech enhance-
ment methods based on the theory of stochastic processes (e.g., linear
filtering methods), and it can, therefore, be quite difficult to understand
similarities and differences between the methodologies. In that connec-
tion, the curious reader might wonder what exactly the distinguishing
characteristics of subspace-based enhancement methods are. Subspace-
based methods are a class of methods that take their starting point in
linear algebra, i.e., they are based on the notions of subspaces and the
properties of vectors and matrices. Simply put, they are based on the idea
of decomposing the correlation matrix of the observed signal using an
eigenvalue-type decomposition and then, from this, find a basis for the
part of the space that contains the desired signal (called the signal sub-
space) and a basis for the part that contains only noise (called the noise
subspace).

Subspace methods have a rich history in signal processing, not only for
speech enhancement. In fact, much of the early work focused on prob-
lems such as parameter estimation, model order estimation, low-rank
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approximations, etc. Perhaps the earliest example of a subspace method
for parameter estimation is Pisarenko’s method [12] for sinusoidal param-
eter estimation. Later followed more, and probably the most famous,
subspace methods for the same problem (although cast as the equivalent
problem of determining spatial frequencies in arrays) such as the MUI-
tiple SIgnal Classification (MUSIC) method [13, 14] (see also the later
papers [15,16]), of which Pisarenko’s method is a special case, and the
Estimation of Signal Parameters via Rotational Invariance Techniques
(ESPRIT) method [17].

Since then, several variations, improvements, and generalizations have
followed, including root MUSIC [18], modified MUSIC [19], min-norm
[20], unitary ESPRIT [21], and (weighted) subspace fitting [22] (on this
matter, see also the tutorial [23]). MUSIC exploits the orthogonality of
the signal and noise subspaces while ESPRIT is based on exploiting the
structure of the involved matrices, more specifically, their shift-invariance.
In [24], it was shown how the model order can be determined statistically
from the ratio between the arithmetic and geometric means of the eigen-
values in combination with model selection criteria (this was essentially
based on the same derivations as [15]). Later, the ideas behind subspace
methods lead to the more general ideas of reduced-rank signal processing
[25] and low-rank adaptive filters [26]. More recently, it has been shown
that the model order estimation problem can be solved not only based on
the eigenvalues (as in [25]) but also by exploiting subspace orthogonality
[27] and shift-invariance [28].

The roots of subspace-based enhancement methods can be traced back
to [29], although that work appears at first glance to also deal with param-
eter estimation, focusing on frequency estimation using linear prediction.
However, in the paper, enhanced signals are reconstructed via the singular
value decomposition of the data matrix, and. hence, the first subspace-
based signal enhancement method was born. Much of the early work
focused on the simple white noise case [30-32] and later the more gen-
eral case of colored noise was treated in detail in [33,34] and later in
[35]. In much of this work, the subspace-based enhancement problem is
seen as a reduced-rank matrix approximation problem, wherein matrix
decompositions are used to obtain a low-rank approximation of a data
matrix. Since this approach has its roots in numerical linear algebra, the
problem is then often seen as a deterministic one, where the realizations
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are being approximated, unlike statistical approaches and linear filter-
ing based on stochastic processes. Although connections between matrix
decompositions and estimation theory do exist [37] and a filtering inter-
pretation of subspace methods was given in [36], the stated problems are
quite different in nature.

At this point, it should be noted that within the general class of sub-
space methods, various decompositions have been used, like the eigen-
value decomposition, the singular value decomposition, and the
Karhunen-Loéve transform (e.g., [38,39]), and some operate on corre-
lation matrices, others on Toeplitz or Hankel data matrices. These are,
however, mathematically equivalent, but their numerical properties and
memory requirements may differ. Interestingly, triangular decomposi-
tions have also been considered more recently [40]. For more on the actual
implementation of the various matrix decompositions and their proper-
ties, we refer the interested reader to [41]. As many real-time applications
require not only fast computations but also sample-by-sample updates,
fast methods for computing a basis for the signal or noise subspaces with
time-recursive updates, so-called subspace trackers, have been developed
[42-46]. Considering that fast and time-recursive implementations of lin-
ear filtering approaches are readily available, this is quite important in
making the subspace-based methods practical.

1.2 SPEECH ENHANCEMENT FROM A SIGNAL SUBSPACE
PERSPECTIVE

We will now go into a bit more detail about how subspace methods work.
The simplest possible incarnation of a subspace method for enhancement
is perhaps that of a projection of the observed signal onto a subspace
known to contain the desired signal (and noise), i.e., the signal subspace.
Then, any noise that may lie elsewhere, i.e., in the noise subspace, is
removed and noise reduction is achieved without harming the speech
signal. A number of questions then arise. First, how do we know that the
desired signal, i.e., a speech signal, occupies only a subspace of the full
space? Second, and if so, how do we identify this subspace?

To answer the first question, one can look to some commonly used
models of speech signals. One such model is the harmonic model, which
has a long and rich history in speech processing, specifically for modeling
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voiced speech. In that model, the speech signal is modeled as a sum of har-
monically related sinusoids. For a specific number of harmonics, say C,
such a model is well known to have a correlation matrix of rank P = 2C
(for the real case). Hence, for any M x M correlation matrix with M > P,
the harmonics will lie in a subspace of dimension P. For signals that
occupy the full space (whose correlation matrix have rank M), the justi-
fication for subspace methods can be found using the theory of low-rank
approximation [25]. This theory states that the best rank r approxima-
tion of a M x M matrix (with » < M) is obtained by using the » largest
singular values and the corresponding singular vectors, and the error
(measured using the Frobenius norm) incurred by this is given simply by
the remaining, small singular values. This applies, for example, when the
number of harmonics of voiced speech exceeds the chosen dimension of
the correlation matrix, and for autoregressive processes, which are often
used as a model of unvoiced speech.

Returning now to the second question, i.e., how to identify the signal
and noise subspaces, there are several ways in which this can be done.
When the noise is white, the problem is particularly simple. In that case.
the two subspaces can be identified from the eigenvalue decomposition
of the observed signal correlation matrix, by simply sorting the eigenvec-
tors according the magnitude of their eigenvalues. Then, the eigenvectors
corresponding to the r largest eigenvalues span the same subspace as
the desired signal, assuming that its correlation matrix is also rank r.
Not only that, they form an orthonormal basis for that space (as the
correlation matrices are symmetric by definition), and the eigenvectors
corresponding to the remaining eigenvalues form an orthonormal basis
for the noise subspace. It then also follows that the two sets of eigenvectors
are orthogonal to each other. When the noise is colored, a pre-whitening
step has to be included in the process, either as explicit pre-processing,
e.g., in the form of filtering, or as part of the eigenvalue decomposition
(see, e.g., [40]). More specifically, the appropriate decomposition is that of
the generalized eigenvalue decomposition. Seen in a more general way.
subspace-based speech enhancement can be seen as a modification of
the eigenvalues via a diagonal so-called gain matrix. This way, subspace-
based enhancement works by first transforming the signal vector, then
applying the gain matrix, after which the signal vector is transformed
back.
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1.3 SCOPE AND ORGANIZATION OF THE WORK

The purpose of the present book is to unify the approaches of subspace-
based enhancement and linear filtering, two approaches that have previ-
ously been considered separate classes of methods, and study the com-
bined approach, both analytically as well as experimentally. We start out
the book by introducing the general concept with diagonalization of the
speech correlation matrix with the eigenvalue decomposition in Chap-
ter 2. We introduce the basic signal model, along with all assumptions,
and the basic problem formulation, and define some important quantities
and the most important performance measures, namely input and out-
put signal-to-noise ratios (SNRs), the noise reduction factor, the speech
reduction factor, and speech distortion index (which are measures of
speech distortion). We then proceed to derive several optimal rectan-
gular filtering matrices based on the eigenvalue decomposition, namely
the maximum SNR, Wiener, minimum variance distortionless response
(MVDR), tradeoff, and linearly constrained minimum variance (LCMV)
filters, something that we will continue to do for the various cases consid-
ered in the book. In Chapter 3, we then extend these principles to joint
diagonalization of the speech and noise correlation matrices, i.e., using
generalized eigenvalue decompositions, and analyze their performance.
The problem of single-channel speech enhancement in the time domain is
then addressed in Chapter 4 using the proposed framework. This is done
in two cases: first for a rank-deficient speech correlation matrix, a case
that applies, as previously explained, for voiced speech, and then for a
full-rank speech correlation matrix. It is then demonstrated how to extend
the principles from single-channel to multichannel speech enhancement
in Chapter 5, still in the time domain. The generalization to multiple chan-
nels turns out to be somewhat complicated, but it leads to an approach
that takes spatial information into account. In Chapter 6, the same prob-
lem is addressed, but this time in the frequency domain. This leads to
a particularly simple solution for the binaural noise reduction problem.
Chapter 7 explores a different problem yet, namely that of determining
the speech (or signal) subspace using a promising, Bayesian approach
based on the Stiefel manifold and the Bingham distribution. Finally, we
study the performance of the various filters in simulations in Chapter 8.
This is done using synthetic speech signals modeled using a set of har-
monically related sinusoids and an autoregressive process, representing
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voiced and unvoiced speech, respectively. The former model results in
speech correlation matrices that are rank deficient while the latter results
in full-rank correlation matrices.
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