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Preface

This book is intended to introduce scientists, engineers, and students to surfaces and
interfaces of electronic materials. It is designed to be a concise but comprehensive guide
to the essential information needed to understand the physical properties of surfaces
and interfaces. the techniques used to measure them, and the methods now available to
control them. The book is organized to provide readers first with the basic parameters that
describe semiconductors, then the key features of their interfaces with vacuum. metal,
and other semiconductors, followed by the many experimental and theoretical techniques
available to characterize electronic material properties, semiconductor surfaces, and their
device applications, and finally our current understanding of semiconductor interfaces
with metals and with other semiconductors — understanding that includes the methods,
both macroscopic and atomic-scale. now available to control their properties.

Electronic material surfaces and interfaces has become an enormous field that spans
physics., chemistry, materials science, and electrical engineering. Its development in terms
of new materials, analytic tools, measurement and control techniques, and atomic-scale
understanding is the result of nearly 70 years of activity worldwide. This book is intended to
provide researchers new to this field with the primary results and a framework for new work
that has developed since then. More in-depth information is provided in a Track I, accessed
online, that provides advanced examples of concepts discussed in the text as well as selected
derivations of important relationships. The problem sets following each chapter provide
readers with exercises to strengthen their understanding of the material presented. Figures
for use by instructors are available from the accompanying website. For more advanced
and detailed information, the reader is referred to Surfaces and Interfaces of Electronic
Materials (Wiley-VCH, Weinheim, 2010) as well as the lists of Further Reading following
each chapter.

On a personal note, the author wishes to acknowledge his Ph.D. thesis advisor, Prof. Eli
Burstein at the University of Pennsylvania and Dr. Charles B. Duke at Xerox Corporation in
Webster, New York for their inspiration and mentoring. Here at The Ohio State University,
he thanks his many Electrical & Computer Engineering and Physics colleagues who have
provided such a stimulating environment for both teaching and research. Most of all, the
author’s deepest thanks are to his wife. Janice Brillson, for her patience, love, and support
while this book was written.

Columbus, Ohio July 31, 2015
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1

Why Surfaces and Interfaces
of Electronic Materials

1.1 The Impact of Electronic Materials

This is the age of materials — we now have the ability to design and create new materials
with properties not found in nature. Electronic materials are one of the most exciting classes
of these new materials. Historically, electronic materials have meant semiconductors, the
substances that can emit and react to light, generate and control current, as well as respond
to temperature, pressure, and a host of other physical stimuli. These materials and their
coupling with insulators and metals have formed the basis of modern electronics and are
the key ingredient in computers, lasers, cell phones, displays, communication networks,
and many other devices. The ability of these electronic materials to perform these functions
depends not only on their inherent properties in bulk form but also, and increasingly so, on
the properties of their surfaces and interfaces. Indeed, the evolution of these materials over
the past 70 years has been for ever decreasing size and increasing complexity, features
that have driven ever increasing speeds and the ability to manage ever larger bodies of
information. In turn, these are enabling our modern day quality of life.

1.2 Surface and Interface Importance as Electronics Shrink

Surfaces and interfaces are central to microelectronics. One of the most common micro-
electronic devices is the transistor, whose function can illustrate the interfaces involved
and their increasing importance as the scale of electronics shrinks. Figure 1.1 shows the
basic structure of a transistor and the functions of its interfaces. Current passes from a
source metal to a drain metal through a semiconductor, in this case, Si. Voltage applied
to a gate metal positioned between the source and drain serves to attract or repel charge

An Essential Guide 1o Electronic Material Surfaces and Interfaces. First Edition. Leonard J. Brillson.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/Brillson/



2 An Essential Guide to Electronic Material Surfaces and Interfaces

Source Gate Drain

pC

¥— Metal-silicide

Figure 1.1 Source-gate—drain structure of a silicon transistor. (Brillson 2010. Reproduced
with permission of Wiley.)

from the semiconductor region, the “channel”, through which current travels. The result is
to control or “gate” the current flow by this third electrode. This device is at the core of the
microelectronics industry.

The interfaces between the semiconductor, metal, and insulator of this device play a
central role in its operation. Barriers to charge transport across the metal-semiconductor
interface are a major concern for all electronic devices. Low resistance contacts at Si source
and drain contacts typically involve metals that produce interface reactions, for example,
Ti contacts that react with Si with high temperature annealing to form TiSi, between Ti and
Si, as shown in Figure 1.2a. These reacted layers reduce such barriers to charge transport
and the contact resistivity pc. Such interfacial silicide layers form low resistance, planar
junctions that can be integrated into the manufacturing process for integrated circuits and
whose penetration into the semiconductor can be controlled on a nanometer scale.

The gate—semiconductor interface is another important interface. This junction
may involve either: (i) a metal in direct contact with the semiconductor where the
interfacial barrier inhibits charge flow or (ii) as widely used in Si microelectronics, a
metal—insulator—semiconductor stack to apply voltage without current leakage to the
semiconductor’s channel region (Figure 1.2b). Lattice sites within the insulator and at
the insulator—semiconductor interface can trap charges and introduce electric dipoles that
oppose the voltage applied to the gate metal and its control of the channel current. A major
goal of the microelectronics industry since the 1950s has been to minimize the formation
of these localized charge states.

Dopant, impurity atoms

Reactaon Product

(a) (b) (c)

Figure 1.2 Interfaces involved in forming the transistor structure including: (a) the
source or drain metal-semiconductor contact with a reacted interface, (b) the gate
metal-semiconductor contact separated by an insulator in and near which charges are
trapped, and (c) dopant impurity atoms implanted below the surface of a semiconductor to
control its carrier concentration. (Brillson 2010. Reproduced with permission of Wiley.)
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A third important interface involves the implantation of impurity atoms into the semi-
conductor to add donor or acceptor “dopants” that control the transistor’s n- or p-type
carrier type and density within specific regions of the device. This process involves acceler-
ation and penetration of ionized atoms at well-defined depths, nanometers to microns, into
the semiconductor, as Figure 1.2c¢ illustrates. This ion implantation also produces lattice
damage that high temperature annealing can heal. However, such annealing can introduce
diffusion and unintentional doping in other regions of the semiconductor that can change
their electronic activity. Outdiffusion of semiconductor constituents due to annealing is
also possible, leaving behind electronically active lattice sites. Precise design of materials,
surface and interface preparation, thermal treatments, and device architectures are required
in order to balance these competing effects.

At the circuit level, there are multiple interfaces between semiconductors, oxides, and
metals. For Si transistors, the manufacturing process involves (i) growing a Si boule in a
molten bath that can be sectioned into wafers, (ii) oxidizing, diffusing, and implanting with
dopants, (iii) overcoating with various metal and organic layers, (iv) photolithographically
patterning and etching the wafers into monolithic arrays of devices, and (v) dicing the
wafer into individual circuits that can be mounted, wire bonded, and packaged into chips.
Within individual circuit elements, there can be many layers of interconnected conductors,
insulators, and their interfaces. Figure 1.3 illustrates the different materials and interfaces
associated with a 0.18 pm transistor at the bottom of a multilayer AI-W-Si-oxide dielectric
assembly [1]. Reaction, adhesion, interdiffusion, and the formation of localized electronic
states must be carefully controlled at all of these interfaces during the many patterning,
etching, and annealing steps involved in assembling the full structure. The materials used
in this multilayer device architecture have continued to change over decades to compensate
for the otherwise increasing electrical resistance as interconnects between layers shrink
into the nanometer regime. These microelectronic materials and architectures continue to
evolve in order to achieve higher speeds, reliability, and packing density. This continuing
evolution highlights the importance of interfaces since they are an increasing proportion of
the entire structure as circuit sizes decrease and become ever more complex.

Future

Aluminum
conductors
(6 levels)

0.18 pm Today

Figure 1.3 Multilayer, multi-material interconnect architectures at the nanoscale. Feature size
of interconnects at right is 45 nm [1].
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Besides transistors, many other electronic devices rely on interfaces for their oper-
ation. For example, solar cells operate by converting incident light into free electrons
and holes that separate and generate current or voltage in an external circuit. The
charge separation requires built-in electric fields that occur at metal-semiconductor
or semiconductor—semiconductor interfaces. These will be discussed in later chapters.
Transistors without metal gates are another such device. Channel current is controlled
instead by molecules that adsorb on this otherwise free surface, exchanging charge
and inducing electric fields analogous to that of a gate. Interfaces are also important in
devices that generate photons, microwaves, and acoustic waves. These devices require
low resistance contacts to inject current or apply voltage to the layer that generates the
radiation. Otherwise, power is lost at these contacts, reducing or totally blocking power
conversion inside the semiconductor. Semiconductor cathodes that emit electrons when
excited by incident photons are also sensitive to surface conditions. Surface chemical
treatments of specific semiconductors are required in order to promote the emission of
multiple electrons when struck by single photons. useful for electron pulse generation or
photomultipliers.

For devices on the quantum scale, surfaces and interfaces have an even larger impact.
A prime example is the quantum well, one of the workhorses of optoelectronics. Here a
semiconductor is sandwiched between two larger gap semiconductors that localize both
electrons and holes in the smaller gap semiconductor. This spatial overlap between elec-
trons and holes increases electron—hole recombination and light emission. Since the quan-
tum well formed by this sandwich is only a few monolayers thick, the allowed energies of
electrons and holes inside the well are quantized at discrete energies, which promotes effi-
cient carrier population inversion and laser light emission. Imperfections at the interfaces
of these quantum wells introduce alternative pathways for recombination that reduce the
desired emission involving the quantized states. Such recombination is even more serious
for three-dimensional quantum wells, termed quantum dots. Another such example is the
two-dimensional electron gas (2DEG) formed when charges accumulate in narrow inter-
facial layers, only a few tens of nanometers thick, between two semiconductors. The high
carrier concentration, high mobility 2DEG is the basis of high electron mobility transistors
(HEMTs). As with quantum wells, lattice defects at the interface can produce local electric
fields that scatter charges. reduce mobility, and alter or even destroy the 2DEG region. Yet
another quantum-scale structure whose interfaces play a key role is the cascade laser, based
on alternating high- and low-bandgap semiconductors. In this structure, charge must tun-
nel through monolayer thin barrier layers, formed by the higher band gap semiconductors,
into quantized energy levels. Here again, efficient tunneling depends on interfaces without
significant imperfections that could otherwise introduce carrier scattering.

In addition to carrier scattering and recombination, the alignment of energy levels
between constituents is a major feature of interfaces. How energy levels align between
a semiconductor and a metal, as well as between two semiconductors, is a fundamental
issue that is still not well understood. The interface band alignment determines the barriers
to charge transport between constituents and the carrier confinement between them. There
are several factors that can play a role: (i) the band structure of the constituents at the
junction, (ii) the conditions under which the interface forms, and (iii) any subsequent
thermal or chemical processing. Hence, it is important to measure and understand the
properties of these interfaces at the microscopic. indeed atomic, level in order to learn and



