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Inverse problems are found in many applications, such as medical imaging, engineering,
astronomy, and geophysics, among others. To solve an inverse problem is to recover an
object from noisy, usually indirect observations. Solutions to inverse problems are subject
to many potential sources of error introduced by approximate mathematical models,
regularization methods, numerical approximations for efficient computations, noisy data,
and limitations in the number of observations; thus it is important to include an assessment
of the uncertainties as part of the solution. Such assessment is interdisciplinary by nature,
as it requires, in addition to knowledge of the particular application, methods from applied
mathematics, probability, and statistics.

This book bridges applied mathematics and statistics by providing a basic introduction to
probability and statistics for uncertainty quantification in the context of inverse problems, as
well as an introduction to statistical regularization of inverse problems. The author covers
basic statistical inference, introduces the framework of ill-posed inverse problems, and
explains statistical questions that arise in their applications.

An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems includes
« many examples that explain techniques which are useful to address general problems
arising in uncertainty quantification,
« Bayesian and non-Bayesian statistical methods and discussions of their complementary
roles, and
« analysis of a real data set to illustrate the methodology covered throughout the book.

This book is intended for senior undergraduates and beginning graduate students in
mathematics, engineering and physical sciences. The material spans from undergraduate
statistics and probability to data analysis for inverse problems and probability distributions on
infinite-dimensional spaces. It is also intended for researchers working on inverse problems
and uncertainty quantification in geophysics, astrophysics, physics, and engineering.

Because the statistical and probability methods covered have applications beyond inverse
problems, the book may also be of interest to those people working in data science or in other
applications of uncertainty quantification.

Luis Tenorio is a faculty member in the Applied Mathematics and Statistics Department

at the Colorado School of Mines. He obtained his PhD in mathematics at the University of
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Preface

Roughly speaking, to solve an inverse problem is to recover an object (e.g., parameter
or function) from noisy (typically indirect) observations. In most cases such recovery
cannot be done exactly because the mathematical models that link data to the object
are approximations, data are noisy, the number of observations is finite, and obtaining
a solution may require further approximations for efficient numerical computations.
The importance of assessing the reliability of solutions to inverse problems is evident
given such potential sources of errors. This assessment step is part of what is now
called uncertainty quantification (UQ). Uncertainty quantification for inverse prob-
lems and other problems in engineering requires familiarity with some basic methods
from mathematics, probability, and statistics. But what I have observed during years
of collaborations with scientists and applied mathematicians working on inverse prob-
lems is that they often do not feel as comfortable with their knowledge of probability
or statistics as they do with their background in applied mathematics. The converse
is also true: I have encountered statisticians interested in making contributions to in-
verse problems but who have not been exposed to the basic theory of inverse prob-
lems and the questions that arise in their applications. The objective of this book is
therefore to serve as a bridge between the applied mathematics and statistics commu-
nities. I try to take advantage of the reader’s mathematical background to provide a
basic introduction to probability and statistics for UQ mainly in the context of in-
verse problems, a field with many important practical applications. In addition, the
book provides a basic introduction to statistical regularization of inverse problems for
those with a background in statistics. Since the reader is assumed to be comfortable
with mathematical methods at the level of senior undergraduates and beginning grad-
uate students in mathematics, engineering, and physical sciences, much ground can
be covered: from undergraduate statistics and probability to probability distributions
on infinite-dimensional spaces. For statisticians, the book uses classic linear regression
and statistical inference to introduce the framework of ill-posed inverse problems and
explain statistical questions that arise in their applications. A review of the mathemat-
ical analysis tools required for inverse problems is also included in the appendix. Since
the statistical and probability methods covered have applications beyond inverse prob-
lems, the book may also be of interest to people working in data science or in other
applications of UQ.

The selection of topics I cover has been strongly influenced by discussions I have
had over the years with scientists, applied mathematicians, engineers, and students
from a wide variety of fields. In particular, since advances in computational power
have made the use of Bayesian methodology commonplace in many fields of applica-
tion, I believe that the existence of different schools of inference to conduct UQ is a
topic that deserves more attention. For example, [ have encountered practitioners who
were either not aware of the existence of non-Bayesian (e.g., frequentist) methods for
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inverse problems or could not tell (or care about) the difference. And among those
who know about frequentist and Bayesian methods, there are many who are baffled
by common heated discussions among statisticians regarding the merits or demerits
of these two schools of inference. In practical applications we learn that Bayesian and
frequentist methods (as well as likelihood methods) provide valuable tools for UQ
and for statistical analysis in general. I therefore try to cover both frameworks and to
explain their assumptions, corresponding interpretations, and their important com-
plementary roles by means of examples. To keep the mathematics and probability
theory accessible to a wide audience, I consider probability distributions mostly on
finite-dimensional spaces but do provide some background and examples that serve as
introduction to the infinite-dimensional case. However, even within the framework
of finite-dimensional inverse problems, there is no single statistical methodology that
will work in every application: UQ is highly problem dependent. I have chosen a par-
ticular framework that is widely used, has many practical applications, and provides
basic tools for more complex problems.

We are all aware of how difficult it is to put to use new definitions and results as
this requires techniques that are learned with experience. To help with this transition,
each section includes examples with explicit calculations that introduce useful problem
solving techniques relevant to the particular topic. Examples are also used to clarify
theoretical concepts and to illustrate the type of applications for which the methods
could be used. I include over 130 examples but choosing them has not been easy. I
have tried to select simple illustrative examples that can be understood by a diverse
audience. Although it may not be apparent, many of the examples are simplifications
that capture the essence of more complex questions that arise in applications but which
would require much background to explain fully. Some examples are in fact answers
to questions I have received from students and collaborators over the years. Some sec-
tions also include more theoretical but important details to help warn the reader of
subtle statistical /probabilistic issues that arise in applications of UQ and which could
be easily overlooked.

The book is organized as follows. Chapter 1 provides an introduction to inverse
problems and regularization. Chapters 2 and 4 cover probability and statistical meth-
ods whose applications to inverse problems are considered in Chapters 3, 4, and 5.
Chapter 3 includes methods for data analysis, Chapter 4 focuses on Bayesian methods
that are relevant to inverse problems, and Chapter 5 is dedicated to the data analysis of
one particular set of experimental data. One of the goals of Chapter 5 is to illustrate the
nuances that arise when we try to apply theory to the analysis of real data. The book
includes two appendices: In order to make the book as self-contained as possible, and
to establish the general terminology used throughout, Appendix A provides a sum-
mary of results from analysis that are used in different parts of the book. Given the
importance of conditional probability for Bayesian inference, Appendix B provides
a more careful discussion of conditional probability and conditional expectation, in-
cluding the definition of regular conditional probability. Appendix B assumes some
knowledge of measure theoretic probability but is not required for the understanding
of the other chapters. It includes an introduction to an alternative approach to condi-
tional probability based on disintegration which is not commonly taught. I believe this
is a natural approach that may help some readers get a more intuitive understanding
of conditional probability and expectation.

As explained above, the objective of this book is to provide a basic background in
statistics and probability for UQ mainly in the framework of inverse problems. My
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hope is that this book can be used to complement other textbooks that focus on reg-
ularization, mathematical analysis or computational methods for inverse problems.
Readers interested in learning more about regularization or the general theory of in-
verse problems may consult [93, 120, 150, 154], or [8, 126, 256] for more applied or
computational introductions. The book [30] provides an edited collection of research
papers and tutorials for UQ and large-scale inverse problems. For more material on
Bayesian methods for finite-dimensional inverse problems see, for example, [49, 148,
246), and [241] for an introduction to Bayesian methods in the infinite-dimensional
setting, The book should also help the reader learn the basic theory needed to study
Markov chain Monte Carlo (MCMC) methods, which play a key role in Bayesian
statistics but which I do not cover in this book. There are many good references dedi-
cated to the theory or implementations of MCMC methods and Bayesian computation
[42, 49, 113, 209, 234, 245]. The analysis of inverse problems also requires numerical
optimization methods not discussed in this book. The reader may find introductions
to optimization methods that are important for inverse problems in [8, 39, 192, 256].
Readers interested in learning more about general statistical methods, frequentist or
Bayesian, may consult, for example, [22, 52, 55, 104, 163, 164, 224, 226]. The reader
may also find [223] interesting as it provides a historical account of the role statistics
has played in the twentieth century.

I would like to thank Fadil Santosa and the IMA for organizing and funding work-
shops where preliminary versions of this work have been used. I am also thankful to
Roger Ghanem for giving me the opportunity to do the same at USC. I am very grate-
ful to mentors, reviewers, colleagues, students, and friends who have either provided
valuable feedback in the writing of this book, or who have played an important role in
my understanding and appreciation of the subject. In particular, [am specially thankful
to Oscar Aguilar, Vaughn Ball, Wolfgang Bangerth, Julianne and Tia Chung, Maarten
de Hoop, Colin Fox, Mahadevan Ganesh, Eldad Haber, Alex Kalmikov, Paul Martin,
Youssef Marzouk, Joyce McLaughlin, Bill Navidi, Aaron Porter, Juan Restrepo, John
Scales, George Smoot, Alessio Spantini, and Philip Stark. Finally, I would like to thank
Cheryl for her unfailing support and patience.

An apology regarding notation. Different areas of statistics, probability, mathe-
matics, and physics have different notational conventions. For example, it is common
in statistics to denote random variables with capital letters and their realizations with
lower case (e.g., x is a value the random variable X takes). But in this book we need
letters to denote sets, o-algebras, random sets, scalars, vectors, matrices, random vari-
ables, random elements, functions, operators, measures, inner product spaces, normed
spaces, etc. This makes it very difficult to follow any particular convention consis-
tently. I hope the notation will be clear from the context.



oS, 75 2 5e #EPDFIE U7 IR) . www. ertongbook. com



Contents

Preface vii
1 Anintroduction to inverse problems 1
1.1 What is an ill-posed inverse problem? . ................. 1
1.2 Regularization of inverse problems « v o w s c wv v sawwa s s wuw s 7
2 A primer on statistical methods 17
21 Random variables and probability distributions . . . . ........ 17
2.1.1 Change of variable formula. . .. ............. 23

2.2 Expectation and covariance . .. ........... ... ... ..., 25
22.1 Medianand MAD « & s srwn s sme v 2 wmwss swws s 29

23 Agyoaptoticaethods ..o .« oss s vivsss vamisnmnssswmin 31
231 Lawsof largenumbers . . . ................. 31

25.2 Characteristic functions and central limit theorems . 37

233 A summary of convergence results . . ... ... .... 40

234 Basic limit theorems . . ................... 43

2.4 ESUINAatOrs: ; 5 s o ¢ 5 5% # 5 8 B0 ¢ 8 5EE £ § NEE§ 6 HEE S8 HEEE S 47
2.4.1 Poinit estUAtors <o « s www o5 ama 6 s wmd s man 4 5 47

24.2 Propagation of error formula . .............. 52

243 Confidence §6t8 ww s » nsw s s wmw s s nww s s mam s 55

2.5 The multivariate Gaussian distribution .. ............... 57
251 Some distributions associated with the Gaussian . . . 60

252 Confidence sets for the mean of a multivariate Gaussian 62

2.6 Statistics of least-squares . : csu:sows s omasouns s snma s 67
2.6.1 Residuals for model validation . . .. ........... 72

26.2 Least-squares and the pseudoinverse . .......... 74

2.7 RTINS v+ o womi 3 5 i 8% Bk § R BN G REE E S REE 75
271 Conditional expectation. . .. ...... ... .. ... 79

272 Conditional independence . ................ 82

2.8 The Bayesian framework: s csassascivsmisanmssnnmis 84
2.8.1 Bayesrisk . ....... .. ... .. 87

28.2 Back to Bayes' theofem - : s svm s sommssspmsss 89

2.83 A likelihood-based class of priors . . ... ........ 92

2.8.4 Summarizing the posterior distribution. . . ... ... 9%

2.8.5 Bevesian @siduals « s vowsssww st puns s wussas 101

2.8.6 What is meant by “frequentist” or “Bayesian” methods? 102

29 The Gaussian Bayesian linearmodel ... ... ............. 102
2.10  Interpretation of frequentist and Bayesian results . . . .. ... ... 111

\"



Vi

Contents

2.10.1 Sampling interpretation . . ... .............. 112

2.102 Frequentist and Bayesian coverage . ........... 114

2.10.3 Calibrating Bayesian procedures . ............ 119

3 Applications to inverse problems I 127
3.1 Parametricreductions. . . ... ..ottt 127

3.2 Basic characteristics of Tikhonov estimates . . . .. .......... 135

33 Estimatingo andselecting A ........................ 137

3.4  Some simulation and approximation tools . .............. 143

3.4.1 Approximating the trace of a large matrix .. ... .. 147

3.5  Exploring the bias of Tikhonov estimates . . . . ............ 149

351 Exploringthebiasof f; ................... 151

36 Esplotinpihe v theditt .o sonsrnpnisnnus nams v 156

3.7  Varianceandconfidencesets .............cc00tuun... 160

4  Applications to inverse problems II 169
4.1 An introduction to random elements. . . .. .............. 169

4.1.1 Infinite-dimensional Gaussian priors. ... ....... 176

4.1.2 Orthogonal expansions . . ................. 180

4.2 Parametricreductions. . . . ....... ... 189

4.3 Prior distributions for inverse problems . . . .. ............ 190

4.3.1 SEEIEAL DAONS ox5 ¢« snuws snma s nunw s numn s 191

4.3.2 Priors on expansion coefficients. . . ........... 197

4.4  Hierarchical and empirical Bayesian methods . ............ 199

5 A nonlinear parameter estimation problem 207
5:1 Norsedisbribufion: < s css s ss555 665 6 5 nads naws nmae s 208

5.2 Nonlinear least-squares and maximum likelthood . . . . .. ... .. 212

524 Maximum Likelihood .. .................. 214

53  Confidence intervals without parameter estimates . ......... 216

5.4 BRI Ierenes « « ¢ wmm &5 M@5 05 A 5w bR RS & s 218

5.4.1 Prior and posterior predictive checks .......... 221

5.5 Conclusions from the dataanalysis ... ................. 222

A Some results from analysis 225
A.1  BanachandHilbertspaces. .. ... ... ................. 225

A.l1 Normedspaces. .. ........cooviiuunnn.... 225

Al2 InHEr PIOAUCESPACES 5« o5 v s 5 5 sam o5 55 45555 226

Md  OperalorTheory sum e smms s amas eosa0 o 6ba s &onms & 227

A21 Continuous and bounded operators . .......... 227

A22 Adjoints . . ... 229

A3 Compact operators and singular systems . .. ... .. 230

A3  Least-squares and Operators « : s s ss o caeasnnsrrres s oo 233

B Conditional probability and expectation 235
Bibliography 245
Author Index 259

General Index 263



Chapter 1

An introduction to
inverse problems

In this chapter some classic examples are used to illustrate what an inverse problem
is, what it means for the inverse problem to be ill-posed and what one can do to solve
an ill-posed inverse problem. We will also see the role that statistics plays when some
of the components of the mathematical model that defines the inverse problem are
modeled as random.

1.1 « What is an ill-posed inverse problem?

Suppose we have an input, 8, that is transformed by a physical system to produce an
output, #(&). In this case A is called a forward operator, it represents the action of
the physical system on the input 8. By forward problem we mean determining (&)
for a given 6. The inverse problem is the recovery of & given the output (). That
is, it is the recovery of an object from indirect observations. Inverse problems arise
in many fields such as astronomy, physics, geophysics, engineering and medical imag-
ing. The reader may find many examples in [27, 43, 198]. In this section we consider
three examples of inverse problems that illustrate important characteristics of inverse
problems in general.

The difficulties that arise in solving an inverse problem are different from those we
face with the forward problem. For example, since the application of a physical system
usually leads to information loss, it is to be expected that recovering the exact input is
impossible without the use of complementary information that allows the recovery of
what has been lost. Without this extra information one cannot choose a solution that
is consistent with the data and is physically meaningful. This is one way the inverse
problem is ill-posed. Informally, we may think of regularization as a way to include
information for the recovery of the unknown input. But regularization can also used
to stabilize the inversion and obtain solutions that are not dominated by noise.

Example 1.1 (Linear regression and least-squares. Unique but unstable solutions).
We start with the classic linear regression and least-squares framework that is typically
covered in elementary statistics courses. It is an important example that will be used
throughout the book. A data vector, y, is modeled as

y=KpB+e, (1.1.1)

1



Chapter 1. An introduction to inverse problems

where K is a known 7 x p matrix and ¢ is an error (noise) vector . The objective is to
use the data to obtain an estimate of the parameter vector 3. We make the usual linear
regression assumptions that the columns of K are linearly independent and 2 > p. In
particular, there are more observations than unknowns and the matrix K TK is non-
singular. So, Kx =0 only if x = 0. This is a particular type of inverse problem where
the goal is to recover the input, 3, from a vector, y, of indirect noisy observations
linked to 3 through a linear forward operator. Since the vector y may not belong to

the range of K because of the presence of noise, we look for an estimate, /3, such that

K 3 is a best approximation of y, where best is defined in the sense of minimizing
the Euclidean distance from y to the column-space of K. Hence, we need to find the
minimizer of the function F(x) = ||y — Kx|[*. Since the columns of K are linearly in-
dependent, F defines a quadratic function with a unique minimizer that can be found
by setting to zero the derivative of F:

F
aa(") =—2K"y+2K"Kx=0.
X
Hence, the minimizer of F is
B =argmin|ly —Kx|* = (KTK)"'Ky. (1.1.2)
x

The vector S is called the least-squares estimate of 3. The vector K3 is the linear
combination of the columns of K that is closest to y in the Euclidean norm. (We

will see that under some conditions on the noise, 3 is also the maximum likelihood
estimate of /3.)

This simple linear regression problem of estimating /3 is similar to the inverse prob-
lems considered in this book except for one important difference: instead of a matrix,
K, we often start with an operator, &, defined on an infinite-dimensional vector space.
Once the problem is discretized, we end up with a matrix K, as in linear regression,
but this time the matrix K ' K will typically be ill-conditioned. That is, the ratio of its
largest to smallest eigenvalue is very large. We will see in Example 1.5 that this makes
the least-squares estimate very sensitive to noise. Thus, we need to find a way to ob-
tain a solution that is not dominated by noise. One possibility is to use the penalized
least-squares method described in Example 1.5. But this is certainly not the only way;
one can include prior information in other ways such as inequality constraints and
probability distributions. ]

In linear regression the noise is typically modeled as random while in the classic
framework of inverse problems noise is often modeled as deterministic with an upper
bound on its norm [250, 251]. In this book the noise will be modeled as random, an
approach that seems to have been first considered in [242]. Some discussion on these
two approaches can be found in [58, 85]. The assumption that the noise is random and
zero-mean is not necessarily valid if, for example, the model is not specified properly,
such as when there is a nonzero component introduced by an unmodeled physical
process. Validation is an important step in the analysis of an inverse problem to check
that the conclusions are not driven by unreasonable assumptions.

In Example 1.1 we considered inverse problems leading to a linear regression where
KK isill-conditioned. The inverse problem may also be ill-posed in the sense that the
object to be recovered is unidentifiable given the information provided by the data.

A “hat” on a parameter will denote an estimator of such parameter.
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Example 1.2 (Nonuniqueness. Nonidentifiability). Consider again the model (1.1.1) .
but this time assume that K has a nontrivial nullspace (i.e., the columns of K are not
linearly independent). Fix a nonzero vector v, in the nullspace of K. Then even though
there is a true 3 that produced the data, any 8 + @ v, leads to the same data for any
scalar a. There are infinitely many solutions that are consistent with the data; the data
do not provide enough information to identify the true 3. One can use a variety of
methods, such as minimizing the quadratic data-misfit as in least-squares but with a
penalty term (this is the method of penalized least-squares that will be discussed be-
low), to choose a particular solution. The basic idea is to impose constraints to come
up with an estimate that is reasonable. But to define reasonable constraints we need to
have more information about the unknown / we hope to approximate. And once we
have an estimate we still need to assess how good it is. In Chapter 3 we will consider
methods to assess the quality of solutions to inverse problems and study the proper-
ties of penalized least-squares estimators. In section 2.6.2 we derive properties of the
pseudoinverse least-squares estimate that can be used when K has linearly dependent
columns. [ ]

In the next example we consider an inverse problem with a forward operator de-
fined on an infinite-dimensional space. It is clear that such an operator most have a
nullspace if it maps into a finite-dimensional vector space. Thus, it is the type of prob-
lem discussed in Example 1.2. However, we may choose to discretize the operator so
that the resulting matrix is nonsingular but, as we will see later, we still run into prob-
lems caused by the ill-posed nature of the inverse problem because the reduced system
is ill-conditioned as in Example 1.1.

Example 1.3 (Deblurring as an ill-posed inverse problem. Integral equations). We
consider the classic problems of blurring and deblurring a signal described by a func-
tion f. This is a problem that arises in signal and image processing (e.g., in astronomy
and seismic exploration) [27, 71, 212]. For simplicity we assume that f is defined on
the interval [0,1]. The blurring can be modeled as a convolution of the signal with
a kernel function, K, determined by the characteristics of the observing instrument.
This convolution has the effect of smoothing the signal. In this case the forward op-
erator is called a convolution operator. The forward problem consists of blurring the
input signal f: For each x we have an operator ¢, that maps f to an output u(x):

1
,u(x):.)t’xfzjo K(x—1t)f(t)dt. (1.1.3)

For example, a Gaussian kernel is a function of the form K(x) = ¢*"/?*, where o
controls the width of the kernel; the wider the kernel, the smoother the convolved
signal. An equation of the form (1.1.3) is called a Fredholm integral equation of the
first kind [154]. The inverse problem consists of deblurring u(x) to recover f, thus
undoing the effect of the forward operator. The effect of smoothing is the loss of high-
frequency information; two very different signals may get mapped under ¢ to very
similar functions. For example, Figure 1.1 shows two very different functions, f and
¢, that under a Gaussian smoothing kernel are transformed to similar functions (here
g is the smoothed version of f, i.e., a version of f without the high-frequency compo-
nents). This behavior is often an indication that the problem is ill-posed (a more formal
definition of ill-posed problem will be given in section 1.2). In addition to the loss of
information caused by the smoothing, in practical applications we face the problem of
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Figure 1.1. The plot shows the effect that smoothing has on two functions, f and g. Here,
g isalready the smoothed version of f. See Example 1.3. Reprinted with permission from IOP Science
[247]

having only a finite amount of data. That is, we only have values of u(x;) at finitely
many points x;,...,x,. Furthermore, the observations of u(x;) are usually contami-
nated by noise or other potential systematic errors. The noisy discrete data vector, y,
can be modeled as

y=XHf+e,

where y = (y,,...,7,) ", the vector & = (¢,,...,¢,)' represents the noise, and ¢ is
the linear operator that maps f to (X, f,..., %, f ). In particular, if £ is modeled
as an element of an infinite-dimensional linear space and ¥ maps into R”, then ¥’
has a nontrivial nullspace, Null(¢). So, if f is the true function and f, is a nonzero
element in Null(¢) (as in Example 1.2), then f, = f + af; generates exactly the same
data for any scalar a. Such scalar can be chosen so as to make the difference f — £,
arbitrarily large. Therefore, even in the absence of noise the data for the deblurring
problem do not provide enough information to choose any particular f,. In section
1.2, we will show how to use regularization methods to reformulate the question and
find a solution to the modified problem. In Chapters 3 and 5 we will discuss methods to
check if the solution is meaningful by conducting validation and uncertainty analyses.
&

Operator equations of the form (1.1.3) arise in the study of boundary value prob-
lems (see, e.g., [154]). In fact, much of the work on integral equations has been mo-
tivated by the study of such problems. In the following example we use the Laplace
transform to reduce an initial boundary value problem to an integral equation of the

first kind.

Recall that the Laplace transform of a function, f, is defined as

LLF )= j “Fyedt.

We will use the following two well-known properties of the Laplace transform:

(i) If f is differentiable and f(0) =0, then £[ f'1(s) = s £[ f 1(s).



