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Aims and Scope of the Series

The purpose of this series is to focus on subjects in which fluid mechanics plays a
fundamental role.

As well as the more traditional applications of aeronautics, hydraulics, heat and
mass transfer etc., books will be published dealing with topics which are currently
in a state of rapid development, such as turbulence, suspensions and multiphase
fluids, super and hypersonic flows and numerical modeling techniques.

It is a widely held view that it is the interdisciplinary subjects that will receive
intense scientific attention, bringing them to the forefront of technological
advancement. Fluids have the ability to transport matter and its properties as well
as to transmit force, therefore fluid mechanics is a subject that is particularly open
to cross fertilization with other sciences and disciplines of engineering. The sub-
ject of fluid mechanics will be highly relevant in domains such as chemical,
metallurgical, biological and ecological engineering. This series is particularly
open to such new multidisciplinary domains.

The median level of presentation is the first year graduate student. Some texts
are monographs defining the current state of a field; others are accessible to final
year undergraduates; but essentially the emphasis is on readability and clarity.



Preface

Over the past 50 years, the problem of supercritical or near-critical fluids has turned
from a particular aspect of phase transitions described in books on thermodynamics
to an active domain of research involving a variety of fundamental topics in sta-
tistical physics, fluid dynamics, chemistry, as well as many applications in different
industrial processes. Supercritical fluids have provided a canonical example in the
study of critical phenomena and anomalous exponents. They have displayed
remarkable effects in out-of-equilibrium physics and hydrodynamics where they
have made possible laboratory experiments in an extreme parameter range usually
achieved only in geophysical or astrophysical flows. They also involve rapidly
developing applications in engineering such as the ones taking benefit of the
peculiar properties of chemical reactions in supercritical fluids.

Although there exist excellent books on each facet of the above subjects, a
consistent account of the field is needed since it has become increasingly difficult
to follow the literature on all these different topics. In addition, most books on
supercritical fluids consider either the fundamental problems statistical of statis-
tical physics or the aspects related to engineering processes in fluid dynamics or
chemistry without making connection between these fields. This book will thus fill
a gap in the existing literature. The authors have made a major effort to introduce
the fundamental concepts, both in statistical physics and in hydrodynamics to
readers who have no previous knowledge of these fields. They then present more
specialized material on heat transfer, boiling, and hydrodynamic instabilities in
supercritical fluids with emphasis on related microgravity experiments. The
authors have been most actively engaged in various studies on supercritical fluids
in a remarkable collaborative effort over the past 30 years. This book is a witness
to this fruitful collaboration that provided many results. In particular, pioneering
studies on the piston-effect that is a mechanism of heat transfer characteristic of
near-critical fluids, fluids are widely described in the book.

I hope that this book will provide a profitable introductory text addressed to
graduate students but will also be useful to researchers studying one of the many
aspects of supercritical fluids.

Paris, February 2014 Stephan Fauve



Nomenclature

Latin Symbols

aora, Oscillatory amplitude

a Specific Helmhotz energy

a van der Waals specific attractive parameter

a van der Waals molar attractive parameter

a,, Modulus of the magnetic acceleration vector

A Cross-sectional area

b van der Waals specific covolume

b van der Waals molar covolume

B Amplitude of the magnetic field vector

By Dimensionless thermo-oscillatory number

Cs Velocity of sound

c, Molar heat capacity at constant pressure

€5 Specific heat at constant pressure

Cy Molar heat capacity at constant volume

cy Specific heat at constant volume

CBL Cooling boundary layer

C Convective parameter

d Inner diameter of an anisotropic thermal boundary layer
d Dimension of the space

d. Upper critical dimension of space

dy Thermistor radius

D Outer diameter of an anisotropic thermal boundary layer
D Coefficient of diffusion

Dy Thermal diffusivity

e Molar energy

e Specific energy

e Length, or thickness, of the system

E aw van der Waals solid-liquid interaction energy (per unit area)
f Frequency

HBL Heating boundary layer

g Specific Gibbs free energy
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XViii Nomenclature

g Modulus of the residual gravitational acceleration
gorlg Residual gravitational acceleration expressed in unit of gq
£o Modulus of the Earth’s gravitational acceleration

g* Effective gravitational acceleration

h Specific enthalpy

I Current intensity

J Specific heat flux (or heat flux per area unit)

K,, Typical wave vector of phase-separating domains

K, Reduced typical wave vector of phase-separating domains
£ Capillary length

[, Viscous boundary layer

I Latent heat

y Pseudo-wavelength between phase-separating domains
m Mass

m Molar mass

m, Molecular (or particle) mass

M Order parameter

M Order parameter in the inhomogeneous region

n Dimension of the order parameter

n Refractive index

n Number density

n Molar number

P Pressure

P Prandtl number

q or g Heating power per unit volume or surface

q or Q Heating power or heat flux

q or Q Energy

Heating power

1 Radius of the system

r Spatial variable

7 Space variable

7 Specific gas constant

R Universal constant of ideal gases
Rp Universal ratio for thermal diffusivity
Ry Typical cell radius

Ra, Vibrational Rayleigh number

Ra or Ray Rayleigh number

Re or Reg Reynolds number

Ky Molal entropy

s Specific entropy

S Entropy

l Time

Ip Heat diffusion time

iy Adiabatic temperature equilibrium timescale



Nomenclature Xix

1. or 1y or tpp  Piston effect time

te Typical critical fluctuation time

t* Time reduced by the typical critical fluctuation time

tpE Piston-effect timescale

/4 Temperature

T Critical temperature

s Coexistence temperature

u Specific internal energy

u Molal internal energy

u, v, w Velocity components on Cartesian axes

v Specific volume

v Molar volume

14 Volume

XY Z Cartesian coordinates

£y Critical exponent for the shear dynamic viscosity

X; Critical exponent for the thermal conductivity

Y, (=vx,) Critical exponent of the shear dynamic viscosity

Greek Symbols

€ore Small parameter of asymptotic expansions

o Angle of vibration with respect to the direction of the temperature
gradient

By Isobaric thermal expansion coefficient

v Molar volume

p Density

Pe Critical density

p Molar density

Kt Isothermal compressibility

18 Magnetic susceptibility

ir Isothermal susceptibility

¢ Volume fraction

A Thermal conductivity

€ Correlation length of fluctuations

¥y Ratio of specific heats at constant pressure and constant volume

i Acceleration

T Reduced temperature

v Kinematic viscosity

E Amplitude of vibration

u Shear dynamic viscosity

g Bulk dynamic viscosity

11 Disjoining pressure

Mo Bulk viscosity
n Shear viscosity



XX

Ra
0

wF
Ho

)

Nomenclature

Gas-liquid surface tension

=0.5 (ﬁ}a’m’)z Vibration parameter

Rayleigh number

Time reduced by the piston effect time

Time reduced by heat diffusion time

Chemical potential

Magnetic permeability of vacuum

Thickness of the thermal boundary layer

Distance

Critical exponent of the critical isochore for the specific heat at
constant volume

Critical exponent of the critical isochore of the coexistence curve
Critical exponent of the critical isochore of the isothermal
susceptibility

Critical exponent of the critical isochore of the correlation length
Critical exponent of the critical isotherm of the susceptibility (y)
Fisher’s critical exponent of the correlation function for order
parameter fluctuations at the CP

Corrections-to-scaling exponent

Generic critical exponent

Generic critical amplitude

Angular frequency

Generic exponent of the spatial evolution of the thermal boundary
layer

Period of vibration

Vectors and Tensors

u
X(x, ¥, 2)
v
n

S [1 Ml ,,,l

General

Fluid velocity vector

Spatial location vector

Gradient operator

Unit vector for the direction of
vibration

Viscosity stress vector

Viscosity stress tensor

Vibration vector

Rotational part of vector

Difference (e.g., A7, o7 are temperature
differences)



Nomenclature XXI1

Subscripts and Superscripts

a Averaged quantity

b Background quantity

b Boundary layer quantity
b Bulk quantity

¢ Critical quantity

cx Coexistence quantity

exp Experimental quantity

g Gas phase quantity

IG Ideal gas quantity

[ Liquid phase quantity
MF Mean field approximation
mod Model quantity

P Pulsating quantity

p Quantity at constant pressure
Vv Quantity at constant volume
v Saturated vapor quantity
vdW van der Waals quantity

w Value at-the sample wall
- Cold part, below T,

+ Hot part, above T,

Il Parallel

L Perpendicular

0 Leading amplitude
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