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Preface

There is a staggering number of research studies on the vibration of structures.
Based on a simple search using the Science Citation Index, the numbers of references
associated with the following words are 1,000 for “vibration and string,” 2,000 for
“vibration and membrane,” 7,000 for “vibration and plate,” and 16,000 for “vibration
and beam, bar or rod.” This clearly illustrates the importance of the subject of free
and forced vibrations for analysis and design of structures and machines.

The free vibration of a structural member eventually ceases due to energy dissipation,
either from the material strains or from the resistance of the surrounding fluid. The fre-
quency of such a system will be lowered by damping. But since damping also causes the
amplitude to decay, the resonance with a forced excitation of a strongly damped system
will not be as important as the weakly damped system. In this book. we shall consider the
undamped system, which models the weakly damped system, and only focus on the exact
solutions for free transverse vibration of strings, bars, membranes, and plates because
these solutions elucidate the intrinsic, fundamental, and unexpected features of the solu-
tions. They also serve as benchmarks to assess the validity, convergence, and accuracy
of numerical methods and approximate analytical methods. We define exact solutions to
mean solutions in terms of known functions as well as those solutions determined from
exact characteristic equations. However, this book will not cover longitudinal in-plane/
translational vibrations, shear waves, torsional oscillations, infinite domains (wave propa-
gation), discrete systems (such as linked masses), and frames. The exact solutions for a
wide range of differential equations are useful to academics teaching differential equa-
tions, as they may draw the practical problems associated with the differential equations.

There are seven chapters in this book. Chapter 1 gives the introduction to struc-
tural vibration and the importance of the natural frequencies in design. Chapter 2
presents the vibration solutions for strings. Chapter 3 presents the vibration solu-
tions for membranes. Chapter 4 deals with vibration of bars and beams. Chapter 5
gives the vibration solutions for isotropic plates with uniform thickness. Chapter 6
deals with plates with complicating effects such as the presence of in-plane forces,
internal spring support, internal hinge, elastic foundation. and nonuniform thickness
distribution. Chapter 7 presents vibration solutions for nonisotropic plates, such as
orthotropic, sandwich, laminated, and functionally graded plates.

Owing to the vastness of the literature, there may be relevant papers that escaped
our search in the Science Citation Index. To these authors, we offer our sincere apol-
ogy. Such omissions shall be rectified in a future edition.

Finally, we wish to express our thanks to Dr. Tay Zhi Yung and Mr. Ding Zhiwei
of the National University of Singapore for checking the manuscript and plotting
the vibration mode shapes and also to Dr. Liu Bo of The Solid Mechanics Research
Centre, Beihang University, China, for contributing the sections on rectangular iso-
tropic and orthotropic Mindlin plates.

C.Y. Wang and C. M. Wang
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Introduction to
Structural Vibration

1.1 WHAT IS VIBRATION?

Vibration may be regarded as any motion that repeats itself after an interval of time,
or one may define vibrations as oscillations of a system about a position of equilib-
rium (Kelly 2007). Examples of vibratory motion include the swinging of a pen-
dulum, the motion of a plucked guitar string, tidal motion, the chirping of a male
cicada by rubbing its wings, the flapping of airplane wings in turbulence, the sooth-
ing motion of a massage chair, or the swaying of a slender tall building due to wind
or an earthquake.

The key parameters in describing vibration are amplitude, period, and frequency.
The amplitude of vibration is the maximum displacement of a vibrating particle or
body from its position of equilibrium, and this is related to the applied energy. The
period is the time taken for one complete cycle of the motion. The frequency is the
number of cycles per unit time or the reciprocal of the period. The angular (or cir-
cular) frequency is the product of the frequency and 2n, and hence its unit is radians
per unit time.

Vibrations may be classified as either free vibration or forced vibration. Free vibra-
tion takes place when a system oscillates under the action of forces inherent within
the system itself—when externally imposed forces are absent. A system under free
vibration will vibrate at one or more of its natural frequencies, which are dependent
on the mass and stiffness distributions as well as the boundary conditions. In con-
trast, forced vibration occurs when an external periodic force is applied to the system.

When the effects of friction can be neglected, the vibrations are referred to as
undamped. Realistically, all vibrations are damped to some degree. If a free vibra-
tion is only slightly damped, its amplitude gradually decreases until the motion
comes to an end after a certain time. If the damping is sufficiently large, vibration is
suppressed, and the system then quickly regains its original equilibrium position. A
damped forced vibration is maintained so long as the periodic force that causes the
vibration is applied. The amplitude of the vibration is affected by the magnitude of
the damping forces.

From an energy viewpoint, vibration may be defined as a phenomenon that
involves alternating interchange of potential energy and kinetic energy. If the system
is damped, then some energy is dissipated in each cycle of the vibration, and the
vibratory motion will ultimately come to an end. If a steady motion of vibration is
to be maintained, then the energy dissipated due to damping has to be compensated
by an external source.



2 Structural Vibration

1.2 BRIEF HISTORICAL REVIEW ON VIBRATION OF
STRINGS, MEMBRANES, BEAMS, AND PLATES

According to Rao (1986, 2005), it is likely that the interest in vibration dates back to
the time of the discovery of early musical instruments such as whistles, strings, or
drums, which produce sound from vibration. Drawings of stringed instruments have
been found on the walls of Egyptian tombs that were built around 3000 BC.

In the course of seeking why some notes sounded more pleasant than others, the
Greek mathematician and philosopher Pythagoras (582-507 BC) conducted experi-
ments on vibrating strings. and he observed that the pitch of the note (the frequency
of the sound) was dependent on the tension and length of the string. Galileo (1638),
the Italian physicist and astronomer, took measurements to establish a relation-
ship between the length and frequency of vibration for a simple pendulum and for
strings; he also observed the resonance of two connecting bodies. Marinus Mersenne
(1636), a French mathematician and theologian, also studied the behavior of vibrat-
ing strings. English scientist Robert Hooke (1635-1703) and French mathematician
and physicist Joseph Sauveur (1653—1716) performed further studies on the relation-
ship between the pitch and frequency of a vibrating taut string. Sauveur is noted for
introducing the terms nodes (stationary points), loops, fundamental frequency, and
harmonics, and he is the first scientist to record the phenomenon of beats.

The breakthrough in formulating the governing equations for structural vibra-
tion problems may be attributed to Sir Isaac Newton (1687), who was the first to
formulate the laws of classical mechanics, and to Gottfried Leibniz (1693) as well as
Newton for creating calculus. Euler (1744) and Bernoulli (1751) discovered the dif-
ferential equation governing the lateral vibration of prismatic bars and investigated
its solution for the case of small deflections. Lagrange (1759) also made important
contributions to the theory of vibrating strings. Euler (1766) derived the equations
for the vibration of rectangular membranes under uniform tension as well as for the
vibration of a ring. Poisson (1829) derived the governing equation for vibrating circu-
lar membranes and gave the solutions for the axisymmetric vibration mode. Pagani
(1829) worked out the nonaxisymmetric vibration solution for circular membranes.
Coulomb (1784) investigated the torsional oscillations of a metal cylinder suspended
by a wire.

The German physicist Chladni observed nodal patterns on flat square plates at
their resonant frequencies using sand spread evenly on the plate surface. The sand
formed regular patterns as the sand accumulated along the nodal lines of zero ver-
tical displacements upon induction of vibration. Figure 1.1 shows the patterns of
square plates that were originally published in Chladni’s book (Chladni 1802). In
1816. Sophie Germain successfully derived the differential equation for the vibra-
tion of plates by means of calculus of variations. However, she made a mistake in
neglecting the strain energy due to the twisting of the plate mid-plane. The cor-
rect version of the governing differential equation, without its derivation, was found
posthumously among Lagrange’s notes in 1813. Thus, Lagrange has been credited as
being the first to present the correct equation for thin plates. By using trigonometric
series introduced by Fourier around that time, Navier (1823) was able to readily
determine the exact vibration solutions for rectangular plates with simply supported
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FIGURE 1.1 Chladni’s original figures of vibrating square plates showing nodal lines.
Source: hup://fenwikipedia.org/wiki/File:Chladini.Diagrams.for.Quadratic.Plates.svg.

edges. Poisson (1829) extended Navier’s work to circular plates. The extended plate
theory that considered the combined bending and stretching actions of a plate has
been attributed to Kirchhoff (1850). His other significant contribution is the applica-
tion of a virtual displacement method for solving plate problems.

Lord Rayleigh (1877) presented a theory to explain the phenomenon of vibra-
tion that to this day is still used to determine the natural frequencies of vibrating
structures. Based on the plate assumptions made by Kirchhoff (1850) and Rayleigh’s
theory, early researchers used analytical techniques to solve the vibration problems
of plates. For example, Voigt (1893) and Carrington (1925) successfully derived the
exact vibration frequency solutions for a simply supported rectangular plate and a
fully clamped circular plate, respectively. Ritz (1909) was one of the early research-
ers to solve the problem of the freely vibrating plate, which does not have an exact
solution. He demonstrated how to reduce the upper-bound frequencies by including
more than a single trial (admissible) function and performing a minimization with
respect to the unknown coefficients of these trial functions. The method became
known as the Ritz method. Liew and Wang (1992, 1993) automated the Ritz method
for analysis of arbitrarily shaped plates.



4 Structural Vibration

The theories of vibration of beams and plates were investigated further by
Timoshenko (1921) and Mindlin (1951), and their theories allow for the effects of
transverse shear deformation and rotary inertia. Other, more refined beam and plate
theories that do away with the need for a shear correction factor were developed by
Bickford (1982), Reddy (1984), and Reddy and Phan (1985), who employed higher-
order polynomials in the expansion of the displacement components through the
beam or plate thickness. Leissa (1969) produced an excellent monograph entitled
“Vibration of Plates,” which contains a wealth of vibration solutions for a wide range
of plate shapes and boundary conditions. Originally published by NASA in 1969,
Leissa’'s monograph was reprinted in 1993 by the Acoustical Society of America due
to popular demand.

1.3 IMPORTANCE OF VIBRATION ANALYSIS
IN STRUCTURAL DESIGN

When designing structures, the effect of vibration on them is a very important factor
to consider. Obviously, structures used to support heavy centrifugal machines like
motors and turbines are subjected to vibration. Vibration causes excessive wear of
bearings, material cracking, fasteners to become loose, noise, and abrasion of insula-
tion around electrical conductors, resulting in short circuiting (Wowk 1991). When
cutting a metal, vibration can cause chatter, which affects the quality of the surface
finish. Structural vibration may cause discomfort and even fear in the occupants
working in the building, make it difficult to operate machinery. and cause malfunc-
tioning of equipment.

The natural frequencies of a structure are very important to structural and
mechanical engineers when designing for human comfort, structural serviceability
and operational requirements, and against the occurrence of resonance. Resonance
occurs when the natural frequency of the structure coincides with the excitation
frequency. This resonance phenomenon has to be avoided so as to prevent exces-
sive deformation, fatigue cracks, and even the collapse of the entire structure. For
example, the spectacular collapse of the Tacoma Narrows suspension bridge (that
spanned the Tacoma Narrows strait of Puget Sound between Tacoma and the Kitsap
Peninsula in the U.S. state of Washington) in 1940 was a result of resonance caused
by strong wind gusts. Therefore, structural engineers design their structures to have
a fundamental natural frequency of vibration that satisfies a specific minimum
frequency given in design codes. For instance, the American Association of State
Highway and Transportation Officials (AASHTO) specifies the minimum frequency
for a pedestrian bridge to be 3 Hz. For office buildings, it is recommended that the
natural frequency of floor structures be kept to within 4 Hz, whereas for perfor-
mance stages and dance floors, this minimum limit of natural frequency may be
raised to 8.4 Hz (Technical Guidance Note 2012).

Given the undesirable and devastating effects that vibrations can have on machines
and structures. vibration analysis and testing have become a standard procedure
in the design of structures (Richardson and Ramsey 1981; McConnell and Varoto
2008). Vibration may be reduced by using the illustrative vibrating mechanical
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FIGURE 1.2 A vibrating mechanical system.

system shown in Figure 1.2, where the forcing excitations f{r) to the mechanical sys-
tem S cause the vibration response x(r). The problem at hand is to suppress x(f) to an
acceptable level. The three general ways to do this are:

1. Isolation. Suppress the excitations of the vibration. This method deals with
the forcing excitation f(r)

2. Design modification. Modify or redesign the mechanical system so that for
the same levels of excitation, the resulting vibrations are acceptable. This
method deals with the mechanical system S, which has a mass m, stiffness
k, and damping coefficient c.

3. Control. Absorb or dissipate the vibrations using external devices, through
implicit or explicit sensing and control. This method deals with the vibra-
tion response x(t).

Within each category, there are several approaches for mitigating vibration. Actually,
each of these approaches needs either redesign or modification. It is to be noted
that the removal of faults (e.g., misalignments and malfunctions by repair or parts
replacement) can also reduce vibrations. This approach may be included in any of the
three categories listed here (De Silva 2007).

In order to understand isolation well, we need to know the concept of mechanical
impedance (Wowk 1991). When vibrations travel through different materials and
metal interfaces, they get reduced or attenuated. With the concept of impedance, we
can insert materials into the force transmission path so as to reduce the amplitude
of the vibration. Generally, any material with a lower stiffness than the adjacent
material will function well to attenuate the force, and it works in both directions.
Mechanical springs. air springs, cork. fiberglass, polymer, and rubber are the typical
isolator materials. The performance of the isolator is a function of frequency.

On the other hand, vibration can also be useful in several industrial applica-
tions. For example, compactors, vibratory conveyors, hoppers, sieves, and washing
machines take advantage of vibration to do the job. More interestingly, vibrations
are found to be able to improve the efficiency of certain machining, casting, forging,
and welding processes. Vibration is also used in nondestructive testing of materials
and structures, in vibratory finishing processes, and in electronic circuits to filter out
the unwanted frequencies (Rao 1986). It is also employed in shake tables to simulate
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earthquakes for testing structural designs against seismic action. Of course, most
people enjoy the vibration of a massaging chair/device on their bodies.

1.4 SCOPE OF BOOK

In this book, we focus our attention on the free, harmonic, and flexural vibration of
strings, membranes, beams, and plates. Damping is assumed to be small. and hence it
is neglected. In each of the many structural vibration problems treated herein, we pres-
ent the exact natural angular (or circular) frequencies and their accompanying mode
shapes. Exact solutions are very important, as they clearly reveal the intrinsic fea-
tures of the solutions and provide benchmarks to assess the validity, convergence, and
accuracy of numerical solutions. Here, we define an exact solution as one that can be
expressed in terms of a finite number of terms, and the proposed solution may contain
elementary or common functions such as harmonic or Bessel functions. Special func-
tions, such as hypergeometric functions, are excluded. Analytical solutions that are
not exact, such as infinite series solutions and asymptotic solutions, are also excluded.

The governing differential equations of motion for the problems treated herein
are obtained by using the method of elementary analysis, and the equations are
solved for different boundary conditions. Analytical vibration solutions of structures
with complicated geometries and boundary conditions are difficult or impossible to
obtain. In such cases, numerical methods are required. However, for some cases of
structural geometries and boundary conditions, it is possible to solve the differential
equations exactly in a closed form. In this book, the authors present as many analyti-
cal vibration solutions as possible in one single volume for ready use by engineers,
academicians, and researchers in structural dynamic analysis and design. This book
addresses a variety of boundary conditions, restraints, and mass and stiffness dis-
tributions in the hope that the reader may better understand the effects of shape,
restraints, and boundary conditions on vibration frequencies and mode shapes.

The numerous differential equations and their solutions presented in this book are
also useful for academicians, especially when they wish to provide practical prob-
lems to the differential equations that they present to students of engineering science.
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