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Preface

Since its inception at Oxford in 1969'the British Combinatorial
Conference has becomé¢ a regulaq feature of the international
mathematical calendar. This year the seventh conference will
be held in Cambridge froﬁ 13th to 17th August, under the
auspices of the Department of Pure Mathematics and Mathematical
Statistics. The participants and the contributors represent a
large variety of nationalities ‘and interests.

'The principal speakers were drawn from the mathematicians
of Britain, Europe and America. They were asked to review the
diverse areas of combinatorics in which they are expert. In
this way it was hoped to provide a valuable work of reference
describing the state of thg art of combinatorics. All of the
speakers kindly submitted their articles in advance enabling
them to be published ia this volume and made available in
time for the conference,

I am grateful to the contributors for their cooperation
which has made my task as an editor an easy onme. I am also
grateful to the Cambridge University Press, especially
Mr David Tranah, for their efficiency and skiil.v On behalf
of the British Combinatorial Committee I would like to thank
the British Council, the London Mathematical‘Society and the
Mathematics Faculty of Cambridge University for their

financial support.

June 1979 Béla Bollobés
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1- Resonance and reconstruction
N.L. BIGGS . '

SUMMARY ‘
This artfcle is another attempt to reconcile part 6f'graph
theory and part of theoretical physics. _Spec1f1ca11y, we
shall discuss some aspects of the reconstruction Broblem\ln
terms of simple models of physical phenomena. A previqus es-
say in the same vein (Biggs 1977a, henceforth referred to as
IM) may be consulted for background information and prdbfs of
some basic thebrems. ‘

There are four sections: (1) Interaction Models, (2) the
Algebra of Graph Types, (3) Reconstruction, (4) Partition

Functions for Infinite Graphs.

1. INTERACTION MODELS

1.1 Definitions
Let G bela finite (s1mp1e) graph, with vertex set V and
edge-set E . An 'interaction model' on G arises when the
vertices: of C may have certain attributes, and they inter-
act along ‘the edges accord1ng to 'the values of those. attri-
butes. To be more prec1se, let A denote a finite set of
objects (attributes), and define a state.on G to be a func-
tion w: V-+A . In grﬁph theofy,»we often think of the.attrir‘
butes as. colours, so that a state is.a colouring. In theor-
etical physics; the vertices represent particles of some kind,
and the attributes represent some physical property, such as
a magnetic moment.

The interaction between a pair of adjacent vertices is

measured by a real-valued function i , called the interaction



(2)

function, defined on the set A of unordered pairs of
attributes. That 1is, i{al,az} measures the interaction
between a pair of vertices when they are joined by an edge
and they have attributes a, and a . An interaction model
M is a pair (A,i) , where A 1is a finite set and i is
an interaction function. Thus different interaction models
may represent different physical contexts; while graphs rep-—
resent possible geometrical configurations 'of particles to
which the physical laws apply.

Suppose'that an interaction model M and a graph G are
given. The total 'weight' I(w) of a state w on G is

defined to be

I(w) = T i{wlu),w(v))
{u,v}eE
(The reason for taking a product, rather than a sum, will be
explained shortly.) The partition function for the model ‘M

on G 1is

ZM,6) = ) I(w) (1.1.1)
w:V->A

1.2 Examples .
In models of physical phenomena, the weight I(&) is usually

represented by an expressidn of the form exﬁ[H(w)/kT] -
where k 1is an absolute constant, T 1is the temperature,
and H(w) is a measure of the energy of the state w . Thus
every state has a positive weight, and T(w)/Z represents
the probability of finding the system in a state w . The
expression for H(w) will be a sum of terms X(e) , one for
each 'local interaction' (edge) of the system; thus

‘I(w) = exp E%— ) X(e) = T exp X(e)/kT 5

ecE’ ‘- ecE



So we have recovered the general formulation for I(w) , and
justified the occurrence of the product. In generai, we
think of the partition function Z as the representative 6f‘
the global properties of the system. . T

A specific example is the famous Ising model of magnetism.
In this case, the vertices of' the graph represent pa;ticles
in a ferromagnetic substance, and the attributes are the two
possible orientations of a magnetic moment, conventionally
described as 'up' and 'down'. If two adjacent particles have
the same orientation, they contribute an amount of energy +L
to H(w) , othergise they contribute -L . In order to ex—
press this model in our general framework, we may replace ,'up'
and 'down' by O and 1 , and define an interaction function
for A = {0,1} by

i{0,0} = i{1,1b =e ., if0,1} = >,

where e = exp(L/kT) . We shall demote this interaction model
(A,i) by IT and refer to it as the Ising model at tempera-
ture T . X

An example more fémiliar to graph theorists is the colour-
ing model Cu . Here A 1is a finite set of u (= |A])

colours, and the interaction function is defined as follows:

0 if a; =a ¥ \

if{a,,a,} =
l. 2 1 otherwise

In this model, the weight of a 'colouring' w: V.- A of the
vertices of a graph G 1is ‘zero if any pair of adjacent ver-
tices have the same colour, and 1 otherwise. Hence Z(Cu,q)
is simply the number of proper: colourings of G when u

colours are available.

1.3 Resonant Models

Both the Ising model 'IT and the colouring model Cu have



the property that the interaction function takes only two

values: 1{&1,32} has one valqe i, if a; = a,, and

anothgr value ‘il in all other cases. We may think of such
a model as representing a situation where two particles in-
teract in a special way if they have the same attributes,
and in some other (constant) way if not. This is a kind of
resonance, and we shall refer to such an interaction model-
as a resonant model.

The definition (1.1.1) of the partition function shows
that, if R is a resonant model, Z(R,G) 1is essentially
dependent only on the ratio iolil . For this reason, we

shall confine our attention to a normalized resonant model

RB whose interaction function is given by

B if a, =a, ,

i{a,,a,} =
i 1 otherwise
The following result is perhaps the most important property

of resonant models.

Theorem A Let RB = (A,i) be a resonant model with |A| = u
and interaction function i as in (1.3.1), and let G = (V,E)

be a graph. Then

2(Rg,0) = u'V § (a1 FlTX(E) - (1.3.2)
’ F

"The sum is taken over all subsets F of E , and r(F) de-

notes the rank of the edge-subgraph <F> ,
Proof [IM, p.23].

- Since r(F) < V| for all subsets F of E , Theorem A
tells us that the partition function of a resonant model is a
polynomiai function of the number of attributes, u . In the

case. B = 0 we obtain the well-known chromatic polynomial,

(1.3.1)

SERPNERI



Z(Cu,G) . The significance of 'the polynomial property in the

general theory will appear in Section 3. ) :
It may be noted that thevpolynomiai properfy, and the res-

onance property, are both related to the existence of a "de-

letion and contraction' algorithm: see Vout (1978). =

2. THE ALGEBRA OF GRAPH' TYPES

§ '

2.1 Star Types and Graph Types

A star type is an isomorphism class of finite, simple, non-
separable graphs. We shall use the symbol St .to denote the
set of star types. Iﬁ is often convenient to use a picto-'
graphic repreéentation for the smaller star types: St =

{5 8,00, s 3.

A graph type is a function -t defined on St and taking
non-negative integer values, only a Finkte number of which are
non-zero. We shall use the symbol Gr xto=denote the set of
graph types. A finite graph G has type t if, for each
0 € St , ‘G has t(af "bloqks of star type‘Ao . Thus two
graphsiof the same t;pe are not neéessarily isomorphic; how-/
ever, we shall see that the equivalence relation 'of the same
type’, is the appropriate one for the study of interaction
models.

We shall denote the vector spaces of complex-valued func-
tions defined on St , and on Gr , by X and- Y respect-
ively. éince St ' may be regarded as a subset of < Gr in the
obvious way, we have a projection J: Y = X defined by

(Jy) (o) = y(o) (o € St) .

2.2 Type-Invariants

A function f defined on the set of finite graphs is a type-
invariant if f(Gl) = f(Gz) whenever G1 and G2 have the

same type. In order that f may be a type-invariant, it is



clearly sufficient that it should be an isomorphism invariant
(so that it is invariant for star types), and that it should

be multiplicative over blocks:
£(G) = T£(B)

where the product is taken over the set of blocks B of g .

The partition function of an interaction model is not quite
a type-invariant, .since the multiplicative property does not
hold. (The partition function for two disjoint blocks is not
the same as that for two blocks with one common vertex.) How-
ever, it is easy to see how to remedy this diffieculty. We
define the .reduced partition function of the model M= (A,i) ..
with |A|l = u, to be .

Z(M,G) Iv|

Z(M,G) /u

Theorem B The reduced partition functibn Z(M,G) is a type-

invariant.
Proof [IM, p.63].

Associated with any type-invariant function f there is a
vector ¢ in Y defined by ¢(t) = £f(T) , where T 1is any
graph of type t . Thus we may think of the reduced partition

function, with respect to a given model, as an element of Y.

2.3 Counting Subgraphs

If s and t are graph types, we define ot id_be the

number of edge-subgraphs of a graph S of type 8 which

have type t . There are two ways of fitting these numbers

into our algebraic framework. First, we may think of the .

array (cst) as a matrix, so that we have a linear transform—
‘ .

ation C: Y - Y , defired as follows:

-



(Cy)(s) =) o y(t) (2.3%1)
- t

It is clear that, for each given s , the sum on the right-
hand side involves only a finite number of non-zero terms
¢ _ . Furthermore:

st

Theorem C The linear transformation C is invertible.

Proof We have only to notice that if the graph types are
\
ordered in a suitable way (for instance, compatibly with in-

creasing number of edges) then the matrix (c ) 1is lower

] st
triangular, and its diagonal terms are non-zero. - Hence the
terms of an inverse matrix may be computed recursively in

the usual way.

Another useful way of handling the numbers Cor is to
define, for each graph type s , a.vector <, in Y as

follows:

cs(t) =Cou ° (273:2)
~ The vector g giving the census of subgraphs of. s , may
be considered.as the representative of a 'real' graph type
s . The result of Theorem C implies that-the vectors {cs}
(s € 6r) form a basis for Y , so that each y in Y may
be expressed (uniquély) as a linear combination of the basis
{cs} . Thus y 1is a 'generalized' graph type.

The point of view developed in the previous paragraph was
introduced by Whitney in his pioneering work on graph colour-
ing. He noticed that A is determined by its projection

Jcs in X ; more precisely:

Theorem D There is a (non-linear) operator W: X +Y , imn-

~

dependent of the graph type s , such that



W(Jcs) évcs (for all s € Gr )
Proof [IM, p.67]. (The first pfoof (Whitney, 1932) was ra-
ther coﬁplicated; he failed to invert a matrix. Fortunately,

I had the help-of bolin Vout, who did.)

2.4 Expansions in Algebraic: Form

- The-polynomial expansion (1.3,2) for the partition function
‘of a resonant model-may.be written in algebraic form. For
convenience we introduce a new variable z =1/u , where
u = |A|] is the number of attributes, and use the reduced

partition function. The formula (1.3.2) becomes:

2R,0) = | (g-p'F! ) (2.4.1)
FcE
Thé reduced partiﬁion function and the individual summands on
the right-hand side are type-invafianfé. Thus, if we write
e(s)- and r(s) for the number of edges and the rank of a
graph of type s , we may define vectors P, and m_ in Y

z
as follows:

Dz(s) = Z(RB,S) s mz(s) = (B-l)e(s) zr(s)

’
where S ‘is any graph of type s . If we now collect the
|
terms in (2.4.1) according to the type of the subgraph <F> ,

we obtain
p,(s) = % e, m,(t)

Equivalently, P, ™ sz . In fact, this expression is quite
general, and does not depend on the resonance property of the
model. If & 1is the vector representing.the reduced par-
‘tition function of an interaction model M , then the invert-

ibility of the transformation C ensures that there is a

/



vector m in Y such that £ = Cm . That is,
E(s) =Y o . m(t) . (2.4.2)
st %
t .
It-is helpful to interpret (2.4.2) in the following way: each
subgraph of type t contributes an amount m(t) to the value
of £E(s) . In the case of a resonant model, we have the use-=

ful feature that the contributions are simple monomial ex-

pressions in B and u .

3. RECONSTRUCTION

3.1 The Reconstruction Probleh

In this section we shall explain the relationship between the
foregoing ideas and the 'reconqtructi&n problem" in graph‘
theory. The basic fheory,was first published by Tutte (1967);
there is also an account of it in Biggs (1974). waever, it
was not until Tutte's more recent work became available that
its relevance was generall} recognised (Tutte, 1979). 4

Let G be a finite simple graph-with vertex-set V = {vl,
...,vn} , and let Gi denote the vertex-subgraph <V—vi> of
G . (Gi is ob:ained from G by deleting v, and the edges
incident with it.) In the vertex-reconstruction problem we
are given the set of graphs {Gl""’Gn} , unlabelled and un-
ordered, and we- ask how much information about G may be de-
duced: such information is said to be reconstructible. It is
possible that G itself may be teconstructible,‘but in gen-
eral this- seems to be a difficult question. We shall show
that the partition function Z(R,G) is reconstructible, for
any resonant model R . '

.We begin by taking a census of the non-seéatéble vertex—
subgraphs of G . For a given graph S’ og type s , and a
given star type T , define kST to be the number of vertex-

subgraphs of S which have type 1 . Now each non-separable

.9‘



vertex-subgraph <W> of G 1is a vertex-subgraph of those
Gi for which 1 is not in W . Tﬁus if g denotes the'
type of G , and H denotes the family of types of Gl""’
Gn , we have

(vl =v(Dlx__= § k_ , (3.1.1)
gT heH ht
where v(t1) 1is the number of vertices of the star type 1 .

From this, we deduce the following useful result.

Theorem E Suppose that o and T aré two star types which
occur as vertex-subgraphs of a graph G . The the number
ch is reconstructible.

Proof Clearly, there is nothing to prove unless o is the
type of G . In that case, koc is unity, and the other

values of kOT are determined by (3.1.1).

"For example, let G be a graph of t&pe‘ [ . Then
H={ll,ll,o,A} and we have - B &5 .

(4=2)k,

by " 2*2 532,

and so forth. The full set of relevant values, of ‘kUT “may

be tabulated as follows:

| A 7
i 11 0
i | 1 0 (3.1.2)
2 5 2 1

10



