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Preface

This book studies the dynamics of a generalized prototype of the semilinear
parabolic logistic problem

% — dAu = Iu+a(z)u® in Qx(0,00),
u=20 on JQ x (0, 00), (P.1)
u(+,0) =ug >0 in €,

where Q ¢ RN, with N > 1, is a smooth bounded domain, ¢t > 0 stands for
the time, and a(z) is an arbitrary continuous function such that a(z) < 0 for
all z € Q but a # 0. So, (P.1) is a parabolic boundary value problem for the
degenerate diffusive logistic equation

o _ dAu = u + a(z)u? (P.2)
ot

in . It is said to be degenerate because a(x) can vanish on some patches of
Q, in contrast to the classical case when a(z) < 0 for all z € Q.

In the context of population dynamics, N < 3, Q is the inhabiting area
where the individuals of a species, u, disperse randomly at a constant rate
measured by d > 0; u(z,t) is the density of the individuals of the species at
the location x € Q after time ¢t > 0; A is the intrinsic rate of natural increase
of the species; ug is the initial distribution of the species in €2; and

A

K(z) = (@)’ z e, (P.3)
is the carrying capacity of € at each location x € Q. As we are imposing
homogeneous Dirichlet boundary conditions on 92, the surroundings of €2 are
assumed to be hostile for the species u. So, no individual of the species can
survive on the habitat edges. However, this assumption is far from necessary
for the validity of most of the results discussed in this book. T'wo classic books
on population dynamics from the perspective of reaction diffusion equations
are by J. D. Murray [197] and A. Okubo and S. A. Levin [200].

Although it is folklore that the classical non-spatial logistic equation

u'(t) = Au(t) + au’(t)

where a is a negative constant goes back to P. F. Verhulst [230] (1838), it is
less known that the diffusive logistic equation (P.2) was introduced by A. N.

xiii
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Kolmogorov 1. G. Petrovsky and N. S. Piskunov [124], and independently by
R. A. Fisher [88], in 1937, to study some problems of a biological nature. In
the classical context, a(x) is a continuous function such that a(z) < 0 for all
z € Q. The analysis of the degenerate parabolic problem when a < 0 in € but
a = 0 on some subset of Q with non-empty interior goes back to J. M. Fraile
et al. [90] (1996). An elliptic counterpart of these degenerate models had been
previously analyzed by H. Brézis and L. Oswald [31], and by T. Ouyang [203],
[204], as part of his PhD thesis under the supervision of W. M. Ni.

Naturally, in spatially heterogeneous environments, the carrying capacity,
K(zx), might suffer dramatic variations according to the location of the indi-
viduals of the species on the territory, € €. Indeed, although K(z) might
be very small on some patches of the territory as an effect of harsh environ-
mental conditions or abiotic stress, in benign areas, natural refuges or special
protected zones, K (x) might reach huge values.

From the mathematical point of view, a rather reasonable methodology
to deal with huge variations of the carrying capacity K(z) in the territory
Q is assuming that K = oo, or equivalently a = 0, in the ‘protected areas,’
while it is finite in less favorable zones. This strategy also makes sense from the
biological point of view, as it is equivalent to combining, simultaneously, within
the same territory, the Mathus and the Verhulst laws regulating the growth
of the species. A further perturbation analysis should reveal the complete list
of admissible limiting distribution patterns of the population as time passes
in general diffusive spatially heterogeneous logistic problems.

In the region where a(z) < 0 the temporal evolution of species u is assumed
to be governed by a logistic growth, while in the region where a(x) = 0 the
species v increases according to an exponential growth. The main goal of
this book is predicting the time evolution of the species u in €2 under such
circumstances. Should the species exhibit a genuine logistic behavior in €2,
or, on the contrary, should it exhibit an exponential growth? There is the
possibility that u grows according to the Malthus law on some areas of €2,
while it simultaneously inherits a limited growth on others.

In an effort to summarize the contents of this book in this short -general
preliminary presentation, suppose a(x) has a nodal behavior of the type de-
scribed in Figure P.1, where the territory €2 contains ten protected zones, Q ,,
Q2 ,, which are two balls, or discs if N = 2, with the same radius Ry, .,
1 < i < 4, which are four balls with radius Ry < Ry, and Qf 4, 1 < i < 4,
which are four balls with radius R3 < Rs. The weight function a(x) is assumed
to vanish in all these refuges, or protected zones, while it is negative on their
complement, the shadow region of Figure P.1, denoted by _.

To describe the main findings of this book for this special configuration
of the territory we need to introduce some notation. Given any nice open
connected subset, D, of Q we will denote by \i[—A, D] the lowest eigenvalue
of the linear eigenvalue problem

{ —Au = A\u in D,

u=2~0 on 0D. (P.4)
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As will be discussed in Chapter 1, from a biological perspective, d\1[—A, D]
measures the critical size of the rate of natural increase, A, so that the inhab-
ited area D can maintain the species u dispersing at the rate d in the patch
D, in the sense that u is driven to extinction if A < d\[—A, D], while it is
permanent if A > d\;[—A, D]. So, the condition d\i[—A, D] < A measures
the necessary geometrical properties and size of the patch D to maintain the
species dispersing at the rate d in D with an intrinsic rate of natural increase
A. When D is a ball of radius R, a simple change of scale reveals that

A[-A4, By]

A1[_A?D] - R2

FIGURE P.1: An admissible nodal configuration for a(z).
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where By is the unit ball of RV . In particular, the larger the protected zone
the smaller the principal eigenvalue. Consequently, setting

a0 = M[—A, Q) ;= M[—4A,Q ], 1<j<3,
it becomes apparent that

_d\[-A,By]

dog = d)\l[—A,Q] <doy = d/\l[_A»Q%),l] = e 1<i< 2)
1
< doy = dM[-A, Q5] = M}%AB—‘] (1<i<4)
2
< dog = dM[-A, Q4] = W a =iy
3

Naturally, for each j = 1,2,3, do; measures the critical size of A so that the
protected zone € ; can maintain the species u in isolation. In other words,

Qf, ; has sufficient resources to maintain u at the increase rate A if, and only
if, A > doj. The main results of the first five chapters of this book, which
constitute Part I, can be summarized as follows:

e If A\ < doy, u is driven to extinction in €.

o If doy < \ < doy, i.e., Q2 can maintain the species at the increase rate A,
but the larger refuges, Qf , and Q3 ,, are unable to maintain it, by e.g.,
a shortage of resources, then the species u grows according to a logistic
law everywhere in €.

e If do; < )\ < doy, ie., the larger protected zones, Qf ; and QF |, can
maintain u at the increase rate A\, but 96’2, 1 <i < 4, are unable to do
so, then u grows up exponentially in the largest protected areas

Qo1 =05, U0,

according to a genuine Malthusian growth, but according to the logistic
law in the remaining areas of the territory

Q] = Q\QO,I-

e If doy < )\ < dos, i.e., the refuges 96‘2, 1 <1 < 4, can maintain u at
the increase rate A, but Q) 4, 1 < i < 4, cannot do so, then u grows
exponentially in the protected areas

4
QO,I = Q(l)’l U le and QO’Q = U Qé),l

i=1
whereas it has a limited logistic increase in

Q=0 \ (Q()‘l U Qo,z).
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e If A > doga, i.e., any refuge is able to maintain u at the increase rate A,
then u grows exponentially in all the protected zones

4 4
Qo1 =0 U Qal, Qo2 = U Qo and Qo3 = U Q.3

i=1 =1

but according to a logistic law in the region

Q3 =0\ (Qo,1 U2 U0 3) = Q.

Consequently, if, for instance, do; < A < dos, and we denote by u(z,t) the
unique solution of (P.1), then, as a consequence of the analysis in Part I, we
find that

tl%rori u(z,t) =00 foral ze€Q)=0Q,U0,

whereas, in the region 2\ Qq,1,

L™ < liminfu(-, t) < limsupu(-,t) < L™ (P.5)
t—ro0 t—00

where L and L stand for the minimal and the maximal positive solutions
of the singular problem

—dAL = AL +a(z)L?> in Q\Qo,,
L= on 89(1),1 UoQg ,, (P.6)
L=0 on 9%

Therefore, the limiting profile of u(z,t) as time ¢ T oo becomes infinity in the
larger refuges, Of ; and QF ;, while it remains bounded in the complement.
These limiting profiles are referred to in this book as metasolutions supported
in the complement of the largest protected zones, 21, because €2, is the portion
of the inhabiting area where the growth of u inherits a genuine logistic charac-
ter and hence it is limited. It should be noted that the smaller refuges cannot
support the species u in isolation if A < doy. The formal concept metasolu-
tion was coined in [109], submitted for publication in September 1998. Then,
it was incorporated into the PhD thesis of R. Gémez-Renasco [105], under
the supervision of the author and defended at the University of La Laguna
(Tenerife, Spain) in early May 1999.

For those readers not familiarized yet with the most recent advances in
the theory of nonlinear parabolic problems, possibly under the influence of
the established (wrong) paradigm that the Harnack inequality is one of the
driving forces of the theory of nonlinear partial differential equations, the
emergence of such metasolutions in the context of population dynamics might
be slightly shocking, as large solutions and metasolutions provide us with
uncontestable evidence that the Harnack inequality is a technical device of a
linear nature of doubtful interest in analyzing global nonlinear problems, as
will become apparent in Section 4.9.
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This might possibly explain the reaction of an anonymous reviewer of [195]
who noted that a series of classical solutions and metasolutions were computed
in the disc of radius 1 centered at the origin, B;, with the choices

Q=B;(0)={zecR?: |z| <1},
Qo1 = A(0.5,1) = {r e R* : 0.5< |z| <1},
Qo2 = By3(0) = {x € R? : |z| < 0.3},
Q_ = A(0.3,0.5) = {x € R? : 0.3 < [z] < 0.5},

by using pseudo-spectral methods.

What the heck is a “metasolution”? Please provide a formal definition. Okay, one
is provided in (4.8), but “metasolutions” is used in the abstract and intro; definition
needs to be earlier. The definition puzzles me. The “large” solution would seem to
be very difficult to compute because of the singularity on the boundary. And what
is the use or point of a solution that is infinite everywhere on another subdomain?
Metasolutions are wierd...

I am alarmed by the references to “blow up”and “approach infinity on the bound-
ary”. Spectral methods are notoriously sensitive to singularities of the solution in-
cluding singularities on the boundaries...

The serious problem with the paper is that the discontinuities of slope in coefli-
cients of partial differential equation and the infinities on the boundary both makes
the solution of partial differential equation singular within the domain.

I hate their B,(0), A(Ro, R1) notation for what are simply the disk of radius R
and the annulus bounded in radius by Ro and R,. For goodness’ sake, use conven-
tional notation and wording: “disk of radius R, r € [0, R],”...

I am further bothered that their coefficient function a(z) is nonzero only for
r € [0.3,0.5] for a problem in the unit disk. The PDE thus has a coefficient with
a slope discontinuity. The function u(r,#) will be singular on the lines r = 0.3 and
r = 0.5. The usual spectral strategy would be to split the domain into three and
solve the linear Helmholtz equation on r € [0,0.3] and r € [0.5,1], the nonlinear
PDE on [0.3,0.5] and carefully match the pieces taking account of the singularities.
Instead the authors blithely ignored the singularities entirely...

Although the strategy proposed by the reviewer in the previous paragraphs
is the most natural one when dealing with linear problems where the Harnack
inequality applies, it is of no help in dealing with singular boundary value
problems such as those treated in [195] and in this book. Contrary to what
happens in most ‘academic problems,’ real problems might be highly nonlinear
and hence can develop internal interfaces whose numerical treatment is a top
level challenge.

It is the hope of the author that the readers of this book will not be
‘alarmed’ by the large solutions and the metasolutions as much as the re-
viewer of [195] was. Although, at first glance, metasolutions might be slightly
hard to digest because of the number of technicalities involved in their study,
during the last two decades they have proven to be categorical imperatives to
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describe the dynamics of wide classes of parabolic equations and systems in
the presence of spatial heterogeneities.

It should be noted that (P.5) does not fully characterize the asymptotic
behavior of the solutions of (P.1) unless,

min __ 7max
LA — LA .

Consequently, to characterize the exact asymptotic profiles as t 1 oo of the
solutions of (P.1), one must face the problem of the uniqueness of the solu-
tions to the singular problem (P.6) and some other closely related singular
problems that the reader will find in Chapter 4. This is the main bulk of Part
I1, consisting of Chapters 6, 7 and 8, where a series of very sharp optimal
uniqueness results found by the author and his coworkers will be analyzed in
a self-contained way.

Finally, the main goal of Part III, formed by the last two chapters, is to
reinforce the evidence that metasolutions also are categorical imperatives to
describe the dynamics of huge classes of spatially heterogeneous semilinear
parabolic problems. Precisely, Chapter 9 analyzes (P.1) in the more general
case when a(z) changes sign, giving a rather complete account of some of
the most relevant recent advances in the theory of superlinear indefinite prob-
lems, and Chapter 10 studies a paradigmatic competing species model with
a protected zone for one of the species to illustrate how large solutions and
metasolutions play a pivotal role in describing the dynamics of spatially het-
erogeneous systems.

This book grew from the monograph [160] and the lecture notes of the
Metasolutions course delivered by the author at the National Center for The-
oretical Sciences, Tsing Hua University, Hsinchu (Taiwan), during July and
August of 2009. The author is delighted to thank Professor Sze-Bi Hsu for his
kind invitation to deliver it, as well as for his brilliant questions and sharp
comments during these lectures. The time spent in Taiwan by the author was
certainly unforgettable, both personally and professionally.

To complete this book, the author has been supported by Research Grant
Ref: MTM2012-30669 of the Ministry of Economy and Competitiveness of
Spain.

Madrid

J. Lopez-Gomez
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