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- Preface

The theory of statistical mference has been developed during the last three
decades to such an extent that even a great number of volumes will not
suffice to cover every theorem and result of some importance. The library
shelves are stacked every year with journals in which hundreds of papers
present - studies in the general field of statistical inference. Concurrently,-
many textbooks'are published every year on :the methods of “statistical
inference and on thé basic theory. Generally these textbooks are written for
the population of undergraduate and beginning graduate students. As a
consequence of this general trend, there are only a few advanced books on the
theory of statistical inference. In this book I attempt to provide the advanced
graduate student and the researcher in mathematical statistics with some of
the material that is in the literature but to a large extent has not yet been
compiled in a book. To attain this objective I have chosen to write this book
on an advanced level. The reader therefore has to be proficient in the theory
of probability and the theory of statistical distribution functions and have
some background in advanced stochastic processes for Chapters 9 and 10.

In addition, general knowledge of advanced calculus real variables, and
functional analysis is helpful. )

T* 'book has ten chapters.. The first chapter gives a general view of the
material in the book. The following nine chapters deal with the topics under
consideration. These chapters are to a large degree self-contained. One can
read each chapter almost independently of the others. Chapter 2, however,
should be considered as a basic one, and is desirable to read the material in
* this chapter first. Each chapter contains a number of problems for solution.
The problems are neither uniformly difficult nor easy, and not all of them are
of high statistical interest. All the problems, however, reflect the material in
the various sections. For the convenience of the reader, a list of the references
cited is provided at the end of each chapter

I began writing this book during the spring semester of 1967, At that time
I was working in the Department of Statistics at Kansas State University. I
would likg to acknowledge Professor H. C. Fryer, the chairman of that
department, for providing me with excellent working conditions and some
secretarial help. My sincere gratitude is extended -also to Professors J. R. -
Blum and L. H. Koopmans who, as chairman of the Mathematics and
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viii PREFACE ,
Statistics Department at the University of New Mexico, provided me with the
necessary help and support.

I am also grateful to Professor Geoﬂ'ry S. Watson who introduced my book
to John Wiley and Sons for pubhcatlon to Professor Debabrata Basu for
some interesting discussions of various topics of statistical inference; to Miss
Beatrice Shube, editor in the Wiley-Interscience Division; and to Mrs. -

Arlene Conkle for an excellent typmg of the manuscript. .
SHELEMYAHU' ;Acxs

Cleve_lmd, Ohio
November, 1970
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CHAPTER 1

Synopsis

1.1. GENERAL INTRODUCTION

This' book represents the author’s attempt to summarize in an integrated
. form the major results in certain fields of the theory of statistical inference.
There are virtually thousands of papers in the statistical literature on various
toplcs of statistical inference, many of which have not yet been accounted
for in textbooks. Results of many of these interesting papers are reported
and presented here. We do not however, report all the studies which
have been published throughout the years on the topics which we discuss.
Only a relatively small number of papers are cited and studied in each chapter.
The choice of which papers to discuss and what results should be presented
is in itself a difficult decision. The author has probably committed the sin -
of overlooking some important results, or not reporting them. In the present
book we concentrate om nine basic branches of the theory of statistical
inference. These include the following: sufficient statistics; unbiased esti-
mation; the efficiency of estimators under quadratic loss; maximum likelihood -
estimation; Bayes and minimax estimation; equivariant estimation; ad-
missibility of estimators; testmg statistical hypotheses; confidence and toler-
ance estimation. A chapter is devoted to each one of these nine subjects.
In order to introduce the reader to the subject matter of each area, we provide
mtroductory sections which summarize the material discussed in the corre-
sponding chapters. These sections are designed to present a general view of
what can be found in this book. '

Important subject areas of statistical inference which are not discussed
in this book are the following: nonparametnc procedures of testing and
“estimation (only a few sections in the book deal with “distribution free
methods), and in particular we do not discuss the important area of robust
. procedures. The subject of sampling finite populations is discussed only
briefly. There is no account of many of the recent important’ contributions
to the theory of simultaneous testing of hypotheses and simultaneous con- ,
fidence intervals estimation. (An introduction to this subject is found in the

1



2 - 7 ' SYNOPSIS

textbook by Miller [1].) Special multivariate techniques are not discussed,
and in particular we do not treat the subjects of optimal design of experiments,
_optimal statistical control, or adaptive procedures, although in several
chapters we do mention certain results from these areas. A reasenably
complete account of all these areas would span several volumes. The subjects
we treat in this book are, on the other hand, fundamental to all areas of
statistical inference. Eight out of nine chapters of subject matter deal with
problems of estimation, but only one chapter is devoted to testing statistical
hypotheses. This fact should not be considered a reflection of the author’s
value judgment concerning the relative importance of the various areas of
statistical inference. It merely reflects the fact that an excellent book is
available on testing statistical hypotheses (Lehmann [2]), and we therefore
. present in one chapter only certain subjects that are either not discussed or
only briefly mentioned in Lehmann’s book. On the other hand, there is no
book on the theory of statistical estimation that discusses the subjects
mentioned above on the theoretical level of this book. '
The optimality and admissibility of estimators and of test procedures are
defined and discussed relative to a loss function, which expresses the “regret”
for erroneous decisions in a quantitative manner. The types of loss functions
used are the ones on which results are available in the literature. We do not
- discuss the question of the proper choice of a loss function. The same remark
applies to the types of prior distributions applied in the various examples
in this book. The choice of a prior distribution is not guided by any normative
principle. We proceed now to a synopsis of the various chapters.

1.2. SUFFICIENT STATISTICS

The concept of sufficient statistics was introduced by Fisher [2] in 1922 and
has been ever since a subject of many investigations. Chapter 2 is- devoted
to this important and basic notion of the theory of statistical inference.
We start, in Section 2.1, with several examples of statistical models and their
corresponding sufficient statistics. As originally indicated by Fisher, a
statistic (a function of the observed sample values) is sufficient for the ob-
jectives of statistical inference if it contains, in a certain sense, all the
“information” on the parent distribution (the distribution function according
to which the sample values have been generated). In what sense do we use
the word “information” here? We assume in the statistical model that the
observed random variables have a certain joint distribution function which
belongs to a specified family & of distribution functions. The actual (true)
parent distribution is, however, unknown. Suppose that 7(X) is a statistic
(a properly measurable function of the observed random variables X), such
that the conditional expectation of any other statistic Z(X), given 7(X), is
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independent of §. T(X) is called then & sufficient statistic for 9. If the sample
value of 7(X)is known, the values of any other statistic Z(X) do not add any

“further releyant statistical information on . Furthermore, we can say that
a knowledge of the sample value of a sufficient statistic 7(X) provides the
statistician with all the empirical information required for regenerating an

equivalent sample. This can be done by the common methods of Monte

Carlo simulation. Indeed, since the conditional joint distribution of the

observed random variables X, ..., X,, given T(X), is mdependent of
J, we can generate for each value of T(X) a sample 'Y;, ..., ¥, whose

conditional distribution, given T(X), is like that of X;, .. X,,. Thus one

-method of verifying whether 7(X) is a sufficient staﬁstic is to determine

the conditional distribution of Xj, . .., X,,, given T(X). This method could

very often be difficult and laborious. - '

Fisher [2] and later Neyman [1] provided a simple c‘iterion with which
‘we can generally determine whether a family § of distribution functions
admits a nontrivial sufficient statistic, and what is the form of this statistic.
This criterion is provided by the celebrated Neyman-Fisher factorization
theorem. A rigorous measure-theoretic proof of the Neyman-Fisher factori-
zation theorem was given only in 1949 by Halmos and Savage [l], and in
some generallzat:on by Bahadur [2]. We provide in Section 2.2 some pre-
liminary measure-theoretic framework for the proof of the factonmtloﬂ )

* theorem, that is presented in Section 2.3. Conditions are given for the
existence of sufficient statistics. The usefulness of the theorem is lllustraﬁed
with examples. .

Section 2.4 is devoted to the subject of minimal suﬂiclent statistics. The -
notion is explained first by a simple example, Example 2.6, in which-we show
the relevance of the correspondence between random variables, or statistics,
and the sample spaée partitioning. The idea of minimal sufficient statistics
is then explained in terms of the associated contours: in the sample space,
which contain the contours of all other sufficient statistics. A minimal
sufficient statistic partitions the sample space to the smallest number of con-
tours. The theory of Lehmann and Scheffé [1], published in 1950, is then
discussed. This theory establishes a method of constructing the contours of
minimal sufficient statistics (if exist). It also provides criteria for deciding
- whether a nontrivial sufficient statistic exists. [A' trivial sufficient statistic
_ is either the whole sample (X;, . . . , X,,) or the corresponding order statistic

Xiays - -+ » Xim)s X € - - € Xip).] As we prove in Theorems 2.4.1 and
2.44, the Lehmann-Scheffé method of constructing minimal sufficient
statistics is valid if the (dominated) family of probability measures is count-
able; or if the corresponding family of density functions is separable, in an
£,-metric, 8(f, g) = [ |f(z) — g(z)| p(dz). These conditions are quite mild.

[Whenever we have a paramctnc family of distribution functions for random
AT
1%



4 . SYNOPSIS

variables (vectors) with a parameter space, which is an open set in a Euclidean
k-space absolutely continuous with respect to the linear Lebesgue measure,
the separability condition holds.] Bahadur [2] extended the above resuits
and proved that whenever the family & of probability measures is dominated
. the log-likelihood function is a minimal sufficient statistic [see (2.4.26))].
This result has many intcmting applications. In particular see Godambe [1]
for a formulation of this result in the theory of sampling finite populations.
Minimal sufficient statistics are closely related to the exponential family of
distribution functions. This relationship is studied in Section 2.5 where we
present a theory developed by Dynkin [1] and published in 1951. This
~ theory prevails only in cases of families of probability measures which are
regular in Dynkin’s special sense. In Dynkin’s theory the log-hkehhood
funcfion plays an important role. Each probability measure P in a regular
family 9 is associated with a log-likelihood function g(z, P), where the
domain of the’ variable » is an interval A on the real line. We consider the
linear space £(8, A) generated by the class 8 = {g(z, P); P € §}. The dimen-
sion of this linear space gives the dimension of the minimal sufficient statistic.
Whenever £(8, A) is an infinite dimensional space, the only sufficient statistic
. is a trivial one. On the other hand, if the dimension of £(8, A)isr =k +1
'and the sample size n is greater than k, the family of distribution functions
is a k-parameter exponential (the Koopmans-Darmois) type. Several ex--
amples exhibit the main result. An interesting result of this theory is- that
whenever a family § of probability measures consists of mixtures of prob-
ability measures the only sufficient statistic is a trivial one (see Example 2.11).
The implication of this is that sufficient statistics are very sensitive to the
assumptions on which the statistical models are based. For example, if
consists of all probability measures corresponding to the normal N(6, 1)
distributions, — o < 8'< co, a minimal sufficient statistic is T,,.= 32 X.
On the other hand, if I consists of probability measures with corresponding.
distribution functions F; ¢(z) = a®(z — 0) + (1 — ) ®(z), where «, 0 <
a < 1, is known or unknown and ®(z) is the N°(0, 1) distribution function,
- then the only sufficient statistic is a trivial one. This shows that even if «
is very close to 1, but still smaller than 1, we cannot reduce the data without
loss of information. . From a pragmatic point of view, however, if  is very
close to 1 so that probability measure of Borel sets B contributed by o ®(z)
is negligible, we could approximate the mixtures F, 4(z) by F(z — 6) and use
.the sufficient statistic 7,. Another implication from the main result of
Section 2.5 is that in many statistical models that are widely used in appli-
cations (e.g., those with the Wiebull distributions, various types of the
Pearson system, Laplace distributions with unknown location parameters) .
the only sufficient statistics are the trivial ones. This is a source of many

P



UNBIASED ESTIMATION ' 5

complications in estimation and in testing of hypotheses, Wthh will be -
* further discussed later on.

Section 2.6 deals with completeness and sufficiency. The properties of
completeness and sufficiency are of fundamental importance in the theory
of uniformly minimum risk unbiased estimation, which is discussed in
Chapter 3. Several -theorems are proven in this section concerning the
conditions under which families of the induced distribution functions of
sufficient statistics are complete. Several examples are provided.

In Section 2.7 we present the theory of sufficiency and invariance. The
results of this theory play a basic role in the theory of minimax estimation
(Chapter 6), equivariant estimation: (Chapter 7), invariant testing of hypoth-
eses (Chapter 9), and so forth. The main problem studied in this section
is the following : Under what conditions does the maximal invariant reduction
- of a sufficient statistic, with respect to a group of transformations 8, yield
an equivalent statistic to the one obtained by a sufficiency reductien. of a
maximal invariant statistic? The conditions are stated in a theorem of Stein -
(Theorem 2.7.1), proven recently by Hall, Wijsman, and Ghosh [1]. The
theory of sufficiency and invariance can be used in many cases to prove that
certain statistics are independent. Among the problems of Section 2.11 are
several that can be easily solved by using the results of this section.

Section 2.8 concerns the property of transitivity of a sequence of sufficient
statistics. The results of this section have important applications in the
theory of sequential estimation and sequential testing of hypotheses. '«

Section 2.9 is devoted to the notion of sufficient experiments, introduced
by Blackwell [1] in 1951. This notion has various applications-in the theory
of optimum design of experiments. Such applications have been shown by
DeGroot [3]. :

Section 2.10 discusses the role of sufficient statistics in Bayesnan analysxs
The results of this section are well known and appear in various books and
papers. In particular we mention the book of Raiffa and Schlaifer [1] and
the interesting application of the notion of Bayes sufficiency in the theory
of sampling finite populanons by Godambe [3].

1.3. UNBIASED ESTIMATION'.

Chapter 3 is devoted to the problem of unbiased estimation of a functional -
g: T—E™, where E®, k > 1, is the Euclidean k-space. In other words,
a function g, whose-domain is a specified family & of probability measures,
is considered. The family & could be a parametric or a nonparametric one,
and the function g ascribes each P of T a real or a vector valued parameter
g(P) (e.g., the first k moments of P, if exist). The objective is to estimate the
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pqmt £(P) on the basis of the observed random variables X;, X,, ... . The
class of all estimators §(X), which are statistics on L = L; x Ly x =+ +,
mapping X to the range of g(P), say ©, and satisfying

CEplg(X))=g(P), allPed,

| is called the class of unbiased estimators of g, relative to 7.

. Lehmann [2], p. 11, defines an unbiased point estimator in a more general
| er. He considers a loss function L(g(P), #(X)) and says that § is an
| m estimator if, - '

Eo{L(g(P), £(X))} < Ep{L(g(P), X))

for all P €T, where g(X) is any other estimator of g(P). It is easy to verify
that the two definitions coincide when the loss function L(g, £) is quadratic,
that is, in the real case L(g, £) = 4(g)(¢ — g)*, 0 < A(g) < co. In this book
we adopted a more common approach, in which an unbiased estimator is
any estimator whose expectation, under P, is equal to g(P) for all P€§.
This definition is independent of any particular choice of a loss function
L(g, 8). Moreover, if we adopt.Lehmann’s more general definition we may -
find, in most cases of i , that an unbiased estimator does mot
exist. In this book we call an estimator ¢ that minimizes the risk function
Ep{L(g(P), §(X))}, at all P &7, a uniformly minimum risk estimator.

As will be shown in examples. (see in particular Chapter 7) uniformly
minimum risk estimators (if exist) are not necessarily unbiased in the classical
sense. Ail estimator £(X) is called a uniformly minimum risk unbiased if it
minimizes the risk Ep{L(g(P), £(X))} uniformly in P €9, with respect to
the class of unbiased estimators only. As' mentioned above, uniformly mini-
mum risk unbiased estimators do not coincide, neoéssarily, with uniformly
minimum risk estimators. :

~ In Section 3.1 we formulate the general theory of uniformly minimum
risk unbiased estimators for quadratic or convex loss functions when- the
family § of probability measures is a parametric one,. that is, when § =
{P,; 0 € ©} where © is some open interval (rectangle) in a k-dimensional
Euclidean space E®). We prove the celebrated Blackwell-Rao-Lehmann-
Scheffé theorem in a general framework for quadratic loss functions of the
form

- L(g,8) = (& — g)'AE — g),

' . . . !
where Aisak X k positive definite matrix. The main result is then generalized
. to cases with any loss function L(g, £), which is convex in ¢ for each g.
- As shown in this section, the existence of a uniformly minimum risk unbiased
estimator depends to a'large extent on whether the family § admits a com-
. plete sufficient statistic. ) _ . .
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Section 3.2 presents several examples of the method of deriving uniformly
minimum risk unbiased estimators in various models. In these examples we
restrict attention to real parameter cases with squared-error loss functions,
that is, L(g, §) = (§ — g)* Since £ is unbiased, the risk function Ep{(§(X) —
g(P))*} is the variance of g(X). Thus the best unbiased estimators for this
loss function are those that are uniformly minimum variance unbiased
(U.l’.V.U.). ' _

In’Section 3.3 we discuss locally minimum variance unbiased (L.M.V.U.)
estimators for cases in which U.M.V.U. estimators do not exist. An unbiased
estimator (X, 6,) is a minimum variance unbiased estimator at 6 = 6, if
Var, {8(X; 6p)} € Var, {g(X)}, where g(X) is any unbiased estimator of g(e)
We restrict attention to parametric cases. A more gegeral definition is
given for cases of véctor valued parameters g(6). We start with a theorem
that establishes a necessary and sufficient condition for an unbiased estimator
£ to be LM.V.U. at 6 = 6,. Many examples are available in the literature
of statistical models for which no U.M.V.U. estimators exist but one can
construct L.M.V.U. estimators that attain a zero variance at one or more
values of 6. We show such an example (Example 3.9) from Sethuraman {1],
in which an L.M.V.U, estimator attains a zero variance at an infinite sequence
of 0 values. The question raised is whether we can prov:de a general method
of constructing L.M.V.U. estimators that attain a zefo variance at one or more
points of 6. We present such a method, apparently attributableto Takeuchi
and published by Morimoto and Sibuya [1]. This method is limited to models
of absolutely continuous distribution functions whose support is an open
interval (6, 5(6)), where b(f) is a differentiable function. By the method
presented we can construct the required estimator in a recursive manner on
intervals of ©. Example 3.8 illustrates this method. In Section 3.3 we also
provide a theorem of Stein [3] that establishes necessary and sufficient
conditions, in terms of the likelihood ratio function, for an estimator g
to be L.M.V.U. at 6 = 6,. The theorem is restricted to dominated families
of probability measures, with (generalized)- density functions satisfying
certain regularity conditions in terms of some linear operators on an L%
space. In ‘these cases we show that Stein’s theorem is a generalization of
the previous theorem of this' section. Whenever the theorem is applicable
it also yields the variance of the L.M.V.U. estimator, in terms of the linear
operators used. ,

Kitagawa [1] provided a general theory of linear translatable operators
on function spaces that can yield in certain statistical models U.M.V.U.
estimators. Washio, Morimoto, and Ikeda [1] applied the theory of Kitagawa
to the case of l-parameter exponential families of distribution functions.
We know that in this case a U.M.V.U. estimator exists, since a minimal
sufficient statistic is complete. The main theorem (Theorem 3.4.2) from



